Yuki Tamura

Learn More
KEY POINTS Traumatic nerve injury or nerve disease leads to denervation and severe muscle atrophy. Recent evidence shows that mitochondrial loss could be a key mediator of skeletal muscle atrophy. Here, we show that daily heat stress treatment rescues denervation-induced loss of mitochondria and concomitant muscle atrophy. We also found that(More)
Mitochondrial and endoplasmic reticulum (ER) stress, and subsequently activated responses (mitochondrial/ER unfolded protein responses; UPRmt/UPRER), are involved in the pathogenesis of sarcopenia. To extend both basic and translational knowledge, we examined (i) whether age-induced mitochondrial and ER stress depend on skeletal muscle type in mice and (ii)(More)
A recent study demonstrated that heat stress induces mitochondrial biogenesis in C2C12 myotubes, thereby implying that heat stress may be an effective treatment to enhance endurance training-induced mitochondrial adaptations in skeletal muscle. However, whether heat stress actually induces mitochondrial adaptations in skeletal muscle in vivo is unclear. In(More)
Recent studies suggested that lactate accumulation can be a signal for mitochondrial biogenesis in skeletal muscle. We investigated whether reductions in lactate concentrations in response to dichloroacetate (DCA), an activator of pyruvate dehydrogenase, attenuate mitochondrial adaptations after exercise training in mice. We first confirmed that DCA(More)
To examine the potential role of lactate as a signalling molecule in skeletal muscle, we performed global gene expression analysis of the mouse gastrocnemius muscle, 3 h after lactate administration using the Affymetrix GeneChip system (Affymetrix, Santa Clara, Calif., USA). Among the top 15 genes with the largest fold change, increased expression of(More)
Monocarboxylate transporter 2 (MCT2) is an important component of the lactate transport system in neurons of the adult brain. Purkinje cells in the cerebellum have been shown to have high levels of MCT2, suggesting that this protein has a key function in energy metabolism and neuronal activities in these cells. However, it is not known whether inhibition of(More)
It is well known that resistance exercise increases muscle protein synthesis and muscle strength. However, little is known about the effect of resistance exercise on mitochondrial dynamics, which is coupled with mitochondrial function. In skeletal muscle, mitochondria exist as dynamic networks that are continuously remodeling through fusion and fission. The(More)
We have established an efficient synthetic methodology for the 13-oxyingenol natural derivative (13-oxyingenol-13-dodecanoate-20-hexanoate), featuring a ring-closing olefin metathesis reaction for the "direct" construction of a highly strained inside-outside framework and a Mislow-Evans-type [2,3]-sigmatropic rearrangement for the stereoselective(More)
Novel types of PKCα activators based on isobenzofuranone bearing a myo-inositol moiety were designed and synthesized. The derivatives with bulky substituents on the myo-inositol moiety significantly activated PKCα, but their binding sites were not the same as that of phorbol ester.