Yuki Nakatani

Learn More
The adenoviral oncoprotein E1A induces progression through the cell cycle by binding to the products of the p300/CBP and retinoblastoma gene families. A new cellular p300/CBP-associated factor (P/CAF) having intrinsic histone acetylase activity has been identified that competes with E1A. Exogenous expression of P/CAF in HeLa cells inhibits cell-cycle(More)
Here we report the molecular identification of cytosolic glutathione (GSH)-dependent prostaglandin (PG) E(2) synthase (cPGES), a terminal enzyme of the cyclooxygenase (COX)-1-mediated PGE(2) biosynthetic pathway. GSH-dependent PGES activity in the cytosol of rat brains, but not of other tissues, increased 3-fold after lipopolysaccharide (LPS) challenge.(More)
The human immunodeficiency virus (HIV) trans- activator protein, Tat, stimulates transcription from the viral long-terminal repeats (LTR) through an RNA hairpin element, trans-activation responsive region (TAR). We and others have shown that trans-activator protein (Tat)-associated histone acetyltransferases (TAHs), p300 and p300/CBP-associating factor(More)
Here we report the molecular identification of membrane-bound glutathione (GSH)-dependent prostaglandin (PG) E(2) synthase (mPGES), a terminal enzyme of the cyclooxygenase (COX)-2-mediated PGE(2) biosynthetic pathway. The activity of mPGES was increased markedly in macrophages and osteoblasts following proinflammatory stimuli. cDNA for mouse and rat mPGESs(More)
Human histone deacetylases I (HDAC1) and II (HDAC2) are homologous proteins (84% identity) that catalyze release of acetyl groups from modified N-terminal lysines of core histones. Histone deacetylation is correlated with both transient and persistent states of transcriptional inactivity (i.e. silencing) in many eukaryotes. In this study, we analyzed(More)
Phospholipase A2 (PLA2) plays crucial roles in diverse cellular responses, including phospholipid digestion and metabolism, host defense and signal transduction. PLA2 provides precursors for generation of eicosanoids, such as prostaglandins (PGa) and leukotrienes (LTs), when the cleaved fatty acid is arachidonic acid, platelet-activating factor (PAF) when(More)
Modification of histones, DNA-binding proteins found in chromatin, by addition of acetyl groups occurs to a greater degree when the histones are associated with transcriptionally active DNA. A breakthrough in understanding how this acetylation is mediated was the discovery that various transcriptional co-activator proteins have intrinsic histone(More)
p300/CBP and PCAF coactivators have acetyltransferase activities and regulate transcription, cell cycle progression, and differentiation. They are both required for MyoD activity and muscle differentiation. Nevertheless, their roles must be different since the acetyltransferase activity of PCAF but not of p300 is involved in controlling myogenic(More)
Human T-cell lymphotropic virus type 1 (HTLV-1) transcriptional activation is mediated by the viral transactivator, Tax, and three 21-bp repeats (Tax response element [TxRE]) located in the U3 region of the viral long terminal repeat (LTR). Each TxRE contains a core cyclic AMP response element (CRE) flanked by 5' G-rich and 3' C-rich sequences. The TxRE(More)
A number of transcriptional coactivators possess intrinsic histone acetylase activity, providing a direct link between hyperacetylated chromatin and transcriptional activation. We have determined the core histone residues acetylated in vitro by recombinant p300 and PCAF within mononucleosomes. p300 specifically acetylates all sites of histones H2A and H2B(More)