Learn More
We previously demonstrated the feasibility of generating therapeutic numbers of cytotoxic T lymphocyte (CTL) clones expressing a CD20-specific scFvFc:CD3zeta chimeric T cell receptor (cTCR), making them specifically cytotoxic for CD20+ B lymphoma cells. However, the process of generating and expanding he CTL clones was laborious, the CTL clones expressed(More)
Despite the promise of radioimmunotherapy using anti-CD20 antibodies (Ab) for the treatment of relapsed patients with indolent non-Hodgkin lymphoma (NHL), most patients treated with conventional doses of (131)I-tositumomab or (90)Y-ibritumomab eventually relapse. We did comparative assessments using conventional radioimmunotherapy targeting CD20, CD22, and(More)
Cellular immune responses have the potential to elicit dramatic and sustained clinical remissions in lymphoma patients. Recent clinical trial data demonstrate that modification of T cells with chimeric antigen receptors (CARs) is a promising strategy. T cells containing CARs with costimulatory domains exhibit improved activity against tumors. We conducted a(More)
Modification of T cells with chimeric antigen receptors (CAR) has emerged as a promising treatment modality for human malignancies. Integration of co-stimulatory domains into CARs can augment the activation and function of genetically targeted T cells against tumors. However, the potential for insertional mutagenesis and toxicities due to the infused cells(More)
Pretargeted radioimmunotherapy (PRIT) using an anti-CD45 antibody (Ab)-streptavidin (SA) conjugate and DOTA-biotin labeled with β-emitting radionuclides has been explored as a strategy to decrease relapse and toxicity. α-emitting radionuclides exhibit high cytotoxicity coupled with a short path length, potentially increasing the therapeutic index and making(More)
We have targeted CD22 as a novel tumor-associated Ag for recognition by human CTL genetically modified to express chimeric TCR (cTCR) recognizing this surface molecule. CD22-specific cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to(More)
UNLABELLED Multistep targeting can improve the therapeutic index of antibody-based targeting, particularly relevant to pediatric tumors where acute toxicity and late effects of treatment are major concerns. Neuroblastoma is uniquely suited for such investigations because of its abundance of surface ganglioside GD2. METHODS 5F11scFv (scFv = single-chain(More)
Radioimmunotherapy (RIT) with α-emitting radionuclides is an attractive approach for the treatment of minimal residual disease because the short path lengths and high energies of α-particles produce optimal cytotoxicity at small target sites while minimizing damage to surrounding normal tissues. Pretargeted RIT (PRIT) using antibody-streptavidin (Ab-SA)(More)
Acute myelogenous leukemia (AML) currently kills the majority of afflicted patients despite combination chemotherapy and hematopoietic cell transplantation (HCT). Our group has documented the promise of radiolabeled anti-CD45 monoclonal antibodies (Ab) administered in the setting of allogeneic HCT for AML, but toxicity remains high, and cure rates are only(More)
We have earlier shown that attenuated measles virus (MV) has therapeutic potential as a replicating oncolytic virus in models of non-Hodgkin's lymphoma (NHL). In the current study, we investigated whether we could obtain replicating MVs capable of entering CD20(+) target cells through an interaction between a single-chain (scFv) anti-CD20 antibody and the(More)