Learn More
The radial glial cells serve as neural progenitors and as a migratory guide for newborn neurons in the developing cerebral cortex. These functions require appropriate organization and proliferation of the polarized radial glial scaffold. Here, we demonstrate in mice that the myristoylated alanine-rich C-kinase substrate protein (MARCKS), a prominent(More)
The cytoskeletal regulators that mediate the change in the neuronal cytoskeletal machinery from one that promotes oriented motility to one that facilitates differentiation at the appropriate locations in the developing neocortex remain unknown. We found that Nck-associated protein 1 (Nap1), an adaptor protein thought to modulate actin nucleation, is(More)
Radial glia are highly polarized cells that serve as neuronal progenitors and as scaffolds for neuronal migration during construction of the cerebral cortex. How radial glial cells establish and maintain their morphological polarity is unknown. Using conditional gene targeting in mice, we demonstrate that adenomatous polyposis coli (APC) serves an essential(More)
We have generated a panel of potent, selective monoclonal antibodies that bind human and mouse alpha(v)beta(6) integrin with high affinity (up to 15 pm). A subset of these antibodies blocked the binding of alpha(v)beta(6) to the transforming growth factor-beta1 latency-associated peptide with IC(50) values as low as 18 pm, and prevented the subsequent(More)
A gene coding for an esterase (SshEstI, 915 bp in length) of the thermoacidophilic archaeon Sulfolobus shibatae DSM5389 was cloned, sequenced, and overexpressed in Escherichia coli JM109 cells as a soluble, catalytically active protein. The deduced amino acid sequence of SshEstI was consistent with a protein containing 305 amino acid residues with a(More)
Neuregulin-1 (NRG1) and Disrupted-in-Schizophrenia-1 (DISC1) are promising susceptibility factors for schizophrenia. Both are multifunctional proteins with roles in a variety of neurodevelopmental processes, including progenitor cell proliferation, migration, and differentiation. Here, we provide evidence linking these factors together in a single pathway,(More)
Interneurons originating from the ganglionic eminence migrate tangentially into the developing cerebral wall as they navigate to their distinct positions in the cerebral cortex. Compromised connectivity and differentiation of interneurons are thought to be an underlying cause in the emergence of neurodevelopmental disorders such as schizophrenia.(More)
The construction of cerebral cortex begins with the formation of radial glia. Once formed, polarized radial glial cells divide either symmetrically or asymmetrically to balance appropriate production of progenitor cells and neurons. Following birth, neurons use the processes of radial glia as scaffolding for oriented migration. Radial glia therefore provide(More)
Radial glia play an essential role in the generation of the cerebral cortex through their function as neuronal precursors and as neuronal migration guides. A molecular marker for radial glia in the developing central nervous system is the brain lipid-binding protein (BLBP). To generate mouse models for the visualization and study of radial glia, we(More)
Glycogen synthase kinase-3beta (GSK-3beta) is thought to mediate morphological responses to a variety of extracellular signals. Surprisingly, we found no gross morphological deficits in nervous system development in GSK-3beta null mice. We therefore designed an shRNA that targeted both GSK-3 isoforms. Strong knockdown of both GSK-3alpha and beta markedly(More)