Yuk Shan Chen

Learn More
The exaggerated flux through polyol pathway during diabetes is thought to be a major cause of lesions in the peripheral nerves. Here, we used aldose reductase (AR)-deficient (AR(-/-)) and AR inhibitor (ARI)-treated mice to further understand the in vivo role of polyol pathway in the pathogenesis of diabetic neuropathy. Under normal conditions, there were no(More)
Progressive loss of pain perception and cutaneous nerve fibers are frequently observed in diabetic patients. We evaluated the feasibility of using thy1-YFP mice that express the yellowish-green fluorescent protein (YFP) in all of their sensory/motor neurons for noninvasive monitoring of cutaneous nerve fiber loss during diabetes. Fluorescent fibers in skin(More)
The neural and glial cells of the intrinsic ganglia of the enteric nervous system (ENS) are derived from the hindbrain neural crest at the vagal level. The Hoxb3 gene is expressed in the vagal neural crest and in the enteric ganglia of the developing gut during embryogenesis. We have identified a cis-acting enhancer element b3IIIa in the Hoxb3 gene locus.(More)
This study examined the role of aldose reductase (AR) in diabetes-associated impaired nerve regeneration using thy1-YFP (YFP) mice. Sciatic nerves of nondiabetic and streptozotocin-induced diabetic AR(+/+)YFP and AR(-/-)YFP mice were transected after 4 weeks of diabetes. Wallerian degeneration and nerve regeneration were evaluated at 1 and 2 weeks(More)
  • 1