Yuk Ming Dennis Lo

Learn More
We have developed a real-time quantitative PCR assay to measure the concentration of fetal DNA in maternal plasma and serum. Our results show that fetal DNA is present in high concentrations in maternal plasma, reaching a mean of 25.4 genome equivalents/ml (range 3.3-69. 4) in early pregnancy and 292.2 genome equivalents/ml (range 76. 9-769) in late(More)
Chromosomal aneuploidy is the major reason why couples opt for prenatal diagnosis. Current methods for definitive diagnosis rely on invasive procedures, such as chorionic villus sampling and amniocentesis, and are associated with a risk of fetal miscarriage. Fetal DNA has been found in maternal plasma but exists as a minor fraction among a high background(More)
OBJECTIVES To validate the clinical efficacy and practical feasibility of massively parallel maternal plasma DNA sequencing to screen for fetal trisomy 21 among high risk pregnancies clinically indicated for amniocentesis or chorionic villus sampling. DESIGN Diagnostic accuracy validated against full karyotyping, using prospectively collected or archived(More)
Using real-time quantitative PCR, cell-free EBV DNA was detectable in the plasma of 96% (55 of 57) of nasopharyngeal carcinoma (NPC) patients (median concentration, 21058 copies/ml) and 7% (3 of 43) of controls (median concentration, 0 copies/ml). Advanced-stage NPC patients had higher plasma EBV DNA levels than those with early-stage disease. At 1 month(More)
Trisomy 21 is the most common reason that women opt for prenatal diagnosis. Conventional prenatal diagnostic methods involve the sampling of fetal materials by invasive procedures such as amniocentesis. Screening by ultrasonography and biochemical markers have been used to risk-stratify pregnant women before definitive invasive diagnostic procedures.(More)
BACKGROUND We recently demonstrated that the promoter of the RASSF1A gene is hypermethylated in the placenta and hypomethylated in maternal blood cells. This methylation pattern allows the use of methylation-sensitive restriction enzyme digestion for detecting the placental-derived hypermethylated RASSF1A sequences in maternal plasma. METHODS We performed(More)
PURPOSE AND EXPERIMENTAL DESIGN Glutathione S-transferases, enzymes that defend cells against damage mediated by oxidant and electrophilic carcinogens, may be critical determinants of cancer pathogenesis. In this report, we assess the role of epigenetic silencing of the GSTP1 gene, a gene encoding the pi-class glutathione S-transferase, in the pathogenesis(More)
Current methods for prenatal diagnosis of chromosomal aneuploidies involve the invasive sampling of fetal materials using procedures such as amniocentesis or chorionic villus sampling and constitute a finite risk to the fetus. Here, we outline a strategy for fetal chromosome dosage assessment that can be performed noninvasively through analysis of placental(More)
Recently, cell-free EBV DNA has been detected in the plasma and serum of patients with nasopharyngeal carcinoma (NPC). We studied the relationship between plasma/serum EBV DNA and tumor recurrence. Using real-time quantitative PCR, the median plasma EBV DNA concentration in 10 patients with tumor recurrence was determined to be 32,350 copies/ml, whereas(More)
PURPOSE We aim to develop a digital PCR-based method for the quantitative detection of the two common epidermal growth factor receptor (EGFR) mutations (in-frame deletion at exon 19 and L858R at exon 21) in the plasma and tumor tissues of patients suffering from non-small cell lung cancers. These two mutations account for >85% of clinically important EGFR(More)