Learn More
Chaperone-mediated autophagy (CMA) and the ubiquitin-proteasomal system (UPS) are two major protein degradation systems responsible for maintaining cellular homeostasis, but how these two systems are regulated after traumatic brain injury (TBI) remains unknown. TBI produces primary mechanical damage that must be repaired to maintain neuronal homeostasis.(More)
Ischemic brain injury is a common disorder linked to a variety of diseases. Significant progress has been made in our understanding of the underlying mechanisms. Previous studies show that protein misfolding, aggregation, and multiple organelle damage are major pathological events in postischemic neurons. The autophagy pathway is the chief route for bulk(More)
Phosphorylation of N-methyl-D-aspartate (NMDA) receptors is a major regulatory mechanism underlying synaptic plasticity. However, changes in NMDA receptors and phosphorylation after traumatic brain injury (TBI) remain incompletely understood. Using an animal TBI model, we observed that the protein level of NMDA receptor subunit NR2B was downregulated in(More)
The microtubule-dependent GEF-H1 pathway controls synaptic re-networking and overall gene expression via regulating cytoskeleton dynamics. Understanding this pathway after ischemia is essential to developing new therapies for neuronal function recovery. However, how the GEF-H1 pathway is regulated following transient cerebral ischemia remains unknown. This(More)
  • 1