Yujie Wei

Learn More
In conventional metals, there is plenty of space for dislocations-line defects whose motion results in permanent material deformation-to multiply, so that the metal strengths are controlled by dislocation interactions with grain boundaries and other obstacles. For nanostructured materials, in contrast, dislocation multiplication is severely confined by the(More)
The strength-ductility trade-off has been a long-standing dilemma in materials science. This has limited the potential of many structural materials, steels in particular. Here we report a way of enhancing the strength of twinning-induced plasticity steel at no ductility trade-off. After applying torsion to cylindrical twinning-induced plasticity steel(More)
Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological(More)
The formation and stabilization of soil aggregates play a key role in soil functions. To date, few studies have been performed on the variation of soil aggregation with increasing soil weathering degree. Here, soil aggregation and its influencing factors along the weathering gradient were investigated. Six typical zonal soils (derived from similar parent(More)
Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially(More)
It is generally observed that the existence of geometrical discontinuity like notches in materials will lead to strength weakening, as a resultant of local stress concentration. By comparing the influence of notches to the strength of three typical materials, aluminum alloys with intermediate tensile ductility, metallic glasses with no tensile ductility,(More)
Metallic glasses (MGs) typically have high yield strength while low ductility, and the latter is commonly considered as the Achilles' heel of MGs. Elucidate the mechanism for such low ductility becomes the research focus of this field. With molecular level simulations, we show the degree of short-range order (SRO) of atomic structure for brittle Fe-based(More)
As foreseen by Richard Feynman in his famous talk titled There's Plenty of Room at the Bottom in 1959, scientists nowadays are miniaturizing structures in materials to achieve better performance as concerned in technical applications. Reducing grain sizes in polycrystalline materials into the range of less than 100nm, for example, could achieve(More)
  • 1