Learn More
More than 150 genes have been identified that affect skin color either directly or indirectly, and we review current understanding of physiological factors that regulate skin pigmentation. We focus on melanosome biogenesis, transport and transfer, melanogenic regulators in melanocytes, and factors derived from keratinocytes, fibroblasts, endothelial cells,(More)
Although it is now widely recognized that tobacco smoke has negative effects on the skin, the molecular mechanisms underlying its skin-aging effects remain uncertain. Epidemiological studies indicate that tobacco smoking is a strong independent predictor of facial wrinkle formation and other aspects of premature skin aging. Recent in vivo studies in humans(More)
Reconstituted 3-dimensional human skin equivalents containing melanocytes and keratinocytes on an artificial dermal substitute are gaining popularity for studies of skin metabolism because they exhibit morphological and growth characteristics similar to human epidermis. In this study, we show that such a pigmented epidermis model can be used to assess the(More)
DNA damage induced by UV radiation is a critical event in skin photocarcinogenesis. However, the role of racial/ethnic origin in determining individual UV sensitivity remains unclear. In this study, we examined the relationships between melanin content and DNA damage induced by UV exposure in situ in normal human skin of different racial/ethnic groups,(More)
More than 125 genes that regulate pigmentation have been identified to date. Of those, MART-1 has been widely studied as a melanoma-specific antigen and as a melanosome-specific marker. Whereas the functions of other melanosomal proteins, such as tyrosinase, tyrosinase-related protein-1, dopachrome tautomerase, and Pmel17, are known, the function of MART-1(More)
Dickkopf 1 (DKK1), which is expressed at high mRNA levels by fibroblasts in the dermis of human skin on the palms and soles, inhibits the function and proliferation of melanocytes in the epidermis of those areas via the suppression of beta-catenin and microphthalmia-associated transcription factor (MITF). In this study, we investigated the protein(More)
We investigated whether or not the topographic regulation of melanocyte differentiation is determined by mesenchymal-epithelial interactions via fibroblast-derived factors. The melanocyte density in palmoplantar human skin (i.e., skin on the palms and the soles) is five times lower than that found in nonpalmoplantar sites. Palmoplantar fibroblasts(More)
Pigmentation of human skin is closely involved in protection against environmental stresses, in particular exposure to ultraviolet (UV) radiation. It is well known that darker skin is significantly more resistant to the damaging effects of UV, such as photocarcinogenesis and photoaging, than is lighter skin. Constitutive skin pigmentation depends on the(More)
To elucidate biologic functions of hepatocyte growth factor and the c-Met receptor in cutaneous wound healing, we analyzed expression and localization of hepatocyte growth factor and c-Met receptor and used a strategy to neutralize endogenous hepatocyte growth factor in a cutaneous wound healing model in mice. Following excision of full-thickness skin on(More)