Yuji Shirakata

Learn More
Keratinocyte proliferation and migration are essential to cutaneous wound healing and are, in part, mediated in an autocrine fashion by epidermal growth factor receptor (EGFR)-ligand interactions. EGFR ligands are initially synthesized as membrane-anchored forms, but can be processed and shed as soluble forms. We provide evidence here that wound stimuli(More)
Eccrine sweat is secreted onto the skin's surface and is not harmful to normal skin, but can exacerbate eczematous lesions in atopic dermatitis. Although eccrine sweat contains a number of minerals, proteins, and proteolytic enzymes, how it causes skin inflammation is not clear. We hypothesized that it stimulates keratinocytes directly, as a danger signal.(More)
PURPOSE To investigate the effects of epiregulin, a newly identified member of the epidermal growth factor (EGF) family, on the proliferation of human corneal epithelial cells (HCECs). METHODS The proliferation of HCECs was determined by cell counting and BrdU incorporation assays at specific times after exposure to different concentrations of human(More)
A disintegrin and metalloproteinase (ADAM) is a family of enzymes involved in ectodomain shedding of various membrane proteins. However, the molecular mechanism underlying substrate recognition by ADAMs remains unknown. In this study, we successfully captured and analyzed cell surface transient assemblies between the transmembrane amphiregulin precursor(More)
Transforming growth factor-beta-activated kinase 1 (TAK1) is a member of the NF-kappaB pathway and regulates inflammatory responses. We previously showed that TAK1 also regulates keratinocyte growth, differentiation, and apoptosis. However, it is unknown whether TAK1 has any role in epithelial-mesenchymal interactions. To examine this possibility, we(More)
PURPOSE The toll-like receptor 3 (TLR3) recognizes viral double-stranded RNA and its synthetic analog polyriboinosinic-polyribocytidylic acid (poly(I:C)), and the activation of TLR3 is known to induce the production of type I interferon (IFN) and inflammatory cytokines/chemokines. The purpose of this study was to determine the role played by innate(More)
  • 1