Learn More
The gene encoding family 8 glycoside hydrolases from Bacillus halodurans C-125 (BH2105), an alkalophilic bacterium with a known genomic sequence, was expressed in Escherichia coli. The protein was expressed with the intact N-terminal sequence, suggesting that it did not possess a signal peptide and that it was an intracellular enzyme. The recombinant enzyme(More)
Fucosyloligosaccharides have great therapeutic potential. Here we present a new route for synthesizing a Fucalpha1,2Gal linkage by introducing glycosynthase technology into 1,2-alpha-l-fucosidase. The enzyme adopts a unique reaction mechanism, in which asparagine-423 activated by aspartic acid-766 acts as a base while asparagine-421 fixes both a catalytic(More)
Reducing end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125 (Rex) hydrolyzes xylooligosaccharides whose degree of polymerization is greater than or equal to 3, releasing the xylose unit at the reducing end. It is a unique exo-type glycoside hydrolase that recognizes the xylose unit at the reducing end in a very strict manner, even(More)
The tyrosine residue Y198 is known to support a nucleophilic water molecule with the general base residue, D263, in the reducing-end xylose-releasing exo-oligoxylanase (Rex). A mutation in the tyrosine residue changing it into phenylalanine caused a drastic decrease in the hydrolytic activity and a small increase in the F(-) releasing activity from(More)
Reducing end xylose-releasing exooligoxylanase (Rex, EC is an inverting GH that hydrolyzes xylooligosaccharides (> or = X3) to release X1 at their reducing end. The wild-type enzyme exhibited the Hehre resynthesis hydrolysis mechanism, in which alpha-X2F was hydrolyzed to X2 and HF in the presence of X1 as an acceptor molecule. However, the(More)
Vibrio proteolyticus chitobiose phosphorylase (ChBP) belongs to glycosyl transferase family 36 (GT-36), and catalyzes the reversible phosphorolysis of chitobiose into alpha-GlcNAc-1-phosphate and GlcNAc with inversion of the anomeric configuration. As the first known structures of a GT-36 enzyme, we determined the crystal structure of ChBP in a ternary(More)
A class IV chitinase belonging to the glycoside hydrolase 19 family from Nepenthes alata (NaCHIT1) was expressed in Escherichia coli. The enzyme exhibited weak activity toward polymeric substrates and significant activity toward (GlcNAc)(n) [β-1,4-linked oligosaccharide of GlcNAc with a polymerization degree of n (n = 4-6)]. The enzyme hydrolyzed the third(More)
α-L-fucosyl residues attached at the non-reducing ends of glycoconjugates constitute histo-blood group antigens Lewis (Le) and ABO and play fundamental roles in various biological processes. Therefore, establishing a method for synthesizing the antigens is important for functional glycomics studies. However, regiospecific synthesis of glycosyl linkages,(More)
A family 36 glycosyltransferase gene was cloned from Vibrio proteolyticus. The deduced amino acid sequence showed a high degree of identity with ChBP (chitobiose phosphorylase) from another species, Vibrio furnissii. The recombinant enzyme catalysed the reversible phosphorolysis of (GlcNAc)2 (chitobiose) to form 2-acetamide-2-deoxy-alpha-D-glucose(More)
Infant gut-associated bifidobacteria possess species-specific enzymatic sets to assimilate human milk oligosaccharides, and lacto-N-biosidase (LNBase) is a key enzyme that degrades lacto-N-tetraose (Galβ1-3GlcNAcβ1-3Galβ1-4Glc), the main component of human milk oligosaccharides, to lacto-N-biose I (Galβ1-3GlcNAc) and lactose. We have previously identified(More)