• Citations Per Year
Learn More
Glasses with high elastic moduli have been in demand for many years because the thickness of such glasses can be reduced while maintaining its strength. Moreover, thinner and lighter glasses are desired for the fabrication of windows in buildings and cars, cover glasses for smart-phones and substrates in Thin-Film Transistor (TFT) displays. In this work, we(More)
Compressional (VP) and shear (VS) wave velocities of polycrystalline MgAl2O4 spinel have been measured up to 14 GPa and 900 K using ultrasonic interferometry and in situ X-ray diffraction techniques. Here, we observed a weaker pressure dependence in shear modulus (G) for MgAl2O4 spinel, as compared to a stronger ∂G/∂P for magnesium silicate/germanate(More)
The presence of seifertite, one of the high-pressure polymorphs of silica, in achondritic shocked meteorites has been problematic because this phase is thermodynamically stable at more than ~100 GPa, unrealistically high-pressure conditions for the shock events in the early solar system. We conducted in situ x-ray diffraction measurements at high pressure(More)
An experimental system to measure the elastic wave velocities of hot-pressed polycrystalline samples at high pressure and high temperature has been installed at SPring-8. It uses a combination of the ultrasonic pulse-echo-overlap method and Kawai-type multi-anvil apparatus (SPEED-1500). X-ray radiographic imaging enables the sample length to be determined(More)
The first natural-occurring quasicrystal, icosahedrite, was recently discovered in the Khatyrka meteorite, a new CV3 carbonaceous chondrite. Its finding raised fundamental questions regarding the effects of pressure and temperature on the kinetic and thermodynamic stability of the quasicrystal structure relative to possible isochemical crystalline or(More)
We determined phase relations in FeCr2O4 at 12–28 GPa and 800–1600 °C using a multi-anvil apparatus. At 12–16 GPa, FeCr2O4 spinel (chromite) first dissociates into two phases: a new Fe2Cr2O5 phase + Cr2O3 with the corundum structure. At 17–18 GPa, the two phases combine into CaFe2O4type and CaTi2O4-type FeCr2O4 below and above 1300 °C, respectively.(More)
Seismic shear wave anisotropy is observed in Earth's uppermost lower mantle around several subducted slabs. The anisotropy caused by the deformation-induced crystallographic preferred orientation (CPO) of bridgmanite (perovskite-structured (Mg,Fe)SiO3) is the most plausible explanation for these seismic observations. However, the rheological properties of(More)
Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth's upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary(More)
Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and(More)
A temperature of 3500 degrees C was generated using a diamond resistance heater in a large-volume Kawai-type high-pressure apparatus. Re and LaCrO(3) have conventionally been used for heaters in high-pressure studies but they cannot generate temperatures higher than 2900 degrees C and make in situ x-ray observations difficult due to their high x-ray(More)