Learn More
The thyroid-specific enhancer-binding protein (T/ebp) gene was disrupted by homologous recombination in embryonic stem cells to generate mice lacking T/EBP expression. Heterozygous animals developed normally, whereas mice homozygous for the disrupted gene were born dead and lacked the lung parenchyma. Instead, they had a rudimentary bronchial tree(More)
Redox status changes exert critical impacts on necrotic/apoptotic and normal cellular processes. We report here a widely expressed Ca2+-permeable cation channel, LTRPC2, activated by micromolar levels of H2O2 and agents that produce reactive oxygen/nitrogen species. This sensitivity of LTRPC2 to redox state modifiers was attributable to an agonistic binding(More)
The Drosophila transient receptor potential protein (TRP) and its mammalian homologues are thought to be Ca(2+)-permeable cation channels activated by G protein (G(q/11))-coupled receptors and are regarded as an interesting molecular model for the Ca(2+) entry mechanisms associated with stimulated phosphoinositide turnover and store depletion. However,(More)
Transient receptor potential (TRP) proteins form plasma-membrane cation channels that act as sensors for diverse cellular stimuli. Here, we report a novel activation mechanism mediated by cysteine S-nitrosylation in TRP channels. Recombinant TRPC1, TRPC4, TRPC5, TRPV1, TRPV3 and TRPV4 of the TRPC and TRPV families, which are commonly classified as(More)
Concentrating urine is mandatory for most mammals to prevent water loss from the body. Concentrated urine is produced in response to vasopressin by the transepithelial recovery of water from the lumen of the kidney collecting tubule through highly water-permeable membranes. In this nephron segment, vasopressin regulates water permeability by endo- and(More)
The scavenging effects of tea catechins and their epimerized, acylated, and glucostylated derivatives on 1,1-diphenyl-2-picrythydrazyl (DPPH) radical were evaluated by electron spin resonance spectrometry. Tea catechins and their epimers were shown to have 50% radical scavenging ability in the concentration range of 1 to 3 microM. No significant differences(More)
The molecular organization of presynaptic active zones is important for the neurotransmitter release that is triggered by depolarization-induced Ca2+ influx. Here, we demonstrate a previously unknown interaction between two components of the presynaptic active zone, RIM1 and voltage-dependent Ca2+ channels (VDCCs), that controls neurotransmitter release in(More)
Reactive oxygen species (ROS) induce chemokines responsible for the recruitment of inflammatory cells to sites of injury or infection. Here we show that the plasma membrane Ca2+-permeable channel TRPM2 controls ROS-induced chemokine production in monocytes. In human U937 monocytes, hydrogen peroxide (H2O2) evokes Ca2+ influx through TRPM2 to activate(More)
Compared to MICs (more than 800 microg/ml) of (-)-epigallocatechin gallate (EGCg) against Escherchia coli, MICs of EGCg against methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MSSA and MRSA) were 100 microg/ml or less. Furthermore, less than 25 microg EGCg per ml obviously reversed the high level resistance of MRSA to all types of(More)
The melastatin-related transient receptor potential channel TRPM2 is a Ca(2+)-permeable channel that is activated by H(2)O(2), and the Ca(2+) influx through TRPM2 mediates cell death. However, the responsible oxidants for TRPM2 activation remain to be identified. In the present study, we investigated the involvement of hydroxyl radical on TRPM2 activation(More)