Learn More
Arodent cardiac side population cell fraction formed clonal spheroids in serum-free medium, which expressed nestin, Musashi-1, and multi-drug resistance transporter gene 1, markers of undifferentiated neural precursor cells. These markers were lost following differentiation, and were replaced by the expression of neuron-, glial-, smooth muscle cell-, or(More)
BACKGROUND Molecular mechanisms regulating the cardiac sensory nervous system remain poorly understood. Cardiac sensory nerve impairment causes silent myocardial ischemia, a main cause of sudden death in diabetes mellitus (DM). The present study focused on the roles of nerve growth factor (NGF) in the regulation of the cardiac sensory nervous system and(More)
BACKGROUND We recently reported that cardiomyocytes could be differentiated from bone marrow mesenchymal stem cells in vitro by 5-azacytidine treatment. In native cardiomyocytes, adrenergic and muscarinic receptors play crucial roles in mediating heart rate, conduction velocity, contractility, and cardiac hypertrophy. We investigated whether these receptors(More)
Both integrin-based focal adhesion complexes and receptor tyrosine kinases have been proposed as scaffolds on which the G protein-coupled receptor (GPCR)-induced signaling complex might assemble. We have recently reported that Ca2+-sensitive tyrosine kinase, Pyk2, and epidermal growth factor receptor (EGFR) act as independently regulated scaffolds in(More)
Bone marrow mesenchymal stem cells (CMG cells) are multipotent and can be induced by 5-azacytidine to differentiate into cardiomyocytes. We characterized the electrophysiological properties of these cardiomyocytes and investigated their potential for use as transplantable bio-pacemakers. After differentiation, action potentials in spontaneously beating(More)
  • 1