Learn More
Bacterial leaf spot disease of hemp was observed in Tochigi Prefecture, Japan in 1982 and characterized by necrotic lesions ca. 1–2 mm diameter on leaves with a yellow halo 2–3 mm wide. In this report, we describe the pathological, physiological and genetic properties of the causal bacterium. Our results indicated that this bacterium is identical with(More)
In October 2010, a bacterial disease produced flecks and spots on leaves of Chinese cabbage, cabbage and Japanese radish in Nagano Prefecture, Japan. The symptoms started on the abaxial surface of leaves as angular, water-soaked flecks of 1–2 mm in diameter with a yellow halo of 3–4 mm width. These flecks then became visible on both leaf surfaces, enlarged(More)
Avena storigosa Schereb. (bristle oat) is used as a green manure in crop rotations and as an antagonist of nematodes in Nagano Prefecture, Japan. In 2011, necrotic, brown, water-soaked lesions were observed on young bristle oat plants. A pathogenic bacterium was isolated from symptomatic leaves of infected plants and produced the same symptoms after(More)
Bacterial leaf spot and blight diseases caused by Pseudomonas syringae pv. maculicola (Psm) and P. cannabina pv. alisalensis (Pcal) are becoming a significant concern for producers of crucifer crops worldwide. Since Psm was first described in 1911, many have reported on its diverse phenotypic, genetic and pathogenic characteristics. Japanese isolates of Psm(More)
Olive knot disease in Japan was first reported in Shizuoka Prefecture in 2014, and the causal agent was identified as Pseudomonas savastanoi pv. savastanoi. Subsequently, olive trees having knots were also found in Aichi and Kanagawa Prefectures in 2015, and the isolates from knots were also suspected to be P. savastanoi pv. savastanoi through preliminary(More)
Forty-one representative Japanese Dickeya spp. (Erwinia chrysanthemi) strains isolated from 24 plants in Japan were investigated using multilocus sequence analysis of recA, dnaX, rpoD, gyrB and 16S rDNA; PCR–RFLP (restriction fragment length polymorphism) of recA, rpoD and gyrB genes; PCR genomic fingerprinting; and biochemical tests. Based on the recA,(More)
  • 1