Yuichi Katori

Learn More
This paper presents a digital silicon neuronal network which simulates the nerve system in creatures and has the ability to execute intelligent tasks, such as associative memory. Two essential elements, the mathematical-structure-based digital spiking silicon neuron (DSSN) and the transmitter release based silicon synapse, allow us to tune the excitability(More)
The prefrontal cortex (PFC) plays a crucial role in flexible cognitive behavior by representing task relevant information with its working memory. The working memory with sustained neural activity is described as a neural dynamical system composed of multiple attractors, each attractor of which corresponds to an active state of a cell assembly, representing(More)
Inferior olive (IO) neurons project to the cerebellum and contribute to motor control. They can show intriguing spatio-temporal dynamics with rhythmic and synchronized spiking. IO neurons are connected to their neighbors via gap junctions to form an electrically coupled network, and so it is considered that this coupling contributes to the characteristic(More)
We investigate the dynamical properties of an associative memory network consisting of stochastic neurons and dynamic synapses that show short-term depression and facilitation. In the stochastic neuron model used in this study, the efficacy of the synaptic transmission changes according to the short-term depression or facilitation mechanism. We derive a(More)
Determining how a particular neuron, or population of neurons, encodes information in their spike trains is not a trivial problem, because multiple coding schemes exist and are not necessarily mutually exclusive. Coding schemes generally fall into one of two broad categories, which we refer to as rate and temporal coding. In rate coding schemes, information(More)
The inferior olive (IO) possesses synaptic glomeruli, which contain dendritic spines from neighboring neurons and presynaptic terminals, many of which are inhibitory and GABAergic. Gap junctions between the spines electrically couple neighboring neurons whereas the GABAergic synaptic terminals are thought to act to decrease the effectiveness of this(More)
Flexible behaviors are organized by complex neural networks in the prefrontal cortex. Recent studies have suggested that such networks exhibit multiple dynamical states, and can switch rapidly from one state to another. In many complex systems such as the brain, the early-warning signals that may predict whether a critical threshold for state transitions is(More)
We have developed an advanced Kirkpartrick-Baez (AKB) x-ray microscope to diagnose laser-produced plasmas. The AKB microscope is composed of two pairs of hyperbolic and elliptic mirrors to avoid spherical aberration and field obliquity. The spatial response of the microscope has been measured by x-ray backlighting a fine grid with laser-plasma x rays. A(More)
Population rate coding and temporal coding are common neural codes. Recent studies suggest that these two codes may be alternatively used in one neural system. Based on the fact that there are massive gap junctions in the brain, we explore how this switching behavior may be related to neural codes in networks of neurons connected by gap junctions. First, we(More)
Here we propose a possible role of chaotic dynamics in the generation of two distinctive rhythm patterns of local field potential of the hippocampus; namely the theta rhythm and large irregular activity (LIA). The basic idea is that the rapid alternation of the state between theta rhythm and LIA can be described as bifurcation of the attractor between limit(More)