Learn More
This article describes the numerical solution of the time-dependent Smoluchowski equation to study diffusion in biomolecular systems. Specifically, finite element methods have been developed to calculate ligand binding rate constants for large biomolecules. The resulting software has been validated and applied to the mouse acetylcholinesterase (mAChE)(More)
We describe a chain of algorithms for molecular surface and volumetric mesh generation. We take as inputs the centers and radii of all atoms of a molecule and the toolchain outputs both triangular and tetrahedral meshes that can be used for molecular shape modeling and simulation. Experiments on a number of molecules are demonstrated, showing that our(More)
The reaction-diffusion system of the neuromuscular junction has been modeled in 3D using the finite element package FEtk. The numerical solution of the dynamics of acetylcholine with the detailed reaction processes of acetylcholinesterases and nicotinic acetylcholine receptors has been discussed with the reaction-determined boundary conditions. The(More)
The t-tubules of mammalian ventricular myocytes are invaginations of the cell membrane that occur at each Z-line. These invaginations branch within the cell to form a complex network that allows rapid propagation of the electrical signal, and hence synchronous rise of intracellular calcium (Ca 2+). To investigate how the t-tubule microanatomy and the(More)
The t-tubules of mammalian ventricular myocytes are invaginations of the cell membrane that occur at each Z-line. These invaginations branch within the cell to form a complex network that allows rapid propagation of the electrical signal, and hence synchronous rise of intracellular calcium (Ca(2+)). To investigate how the t-tubule microanatomy and the(More)
The transverse tubular system of rabbit ventricular myocytes consists of cell membrane invaginations (t-tubules) that are essential for efficient cardiac excitation-contraction coupling. In this study, we investigate how t-tubule micro-anatomy, L-type Ca(2+) channel (LCC) clustering, and allosteric activation of Na(+)/Ca(2+) exchanger by L-type Ca(2+)(More)
Enzymes required for sulfur metabolism have been suggested to gain efficiency by restricted diffusion (i.e., channeling) of an intermediate APS(2-) between active sites. This article describes modeling of the whole channeling process by numerical solution of the Smoluchowski diffusion equation, as well as by coarse-grained Brownian dynamics. The results(More)
The micro-architecture of the transverse tubular system (t-system) and the arrangement of associated proteins are central to the function of ventricular cardiomyocytes. Recently, Savio-Galimberti and collaborators used confocal imaging and digital image processing to characterize the geometry of t-system in rabbit ventricular cells [1]. The average diameter(More)
This article describes a numerical solution of the steady-state Poisson-Boltzmann-Smoluchowski (PBS) and Poisson-Nernst-Planck (PNP) equations to study diffusion in biomolecular systems. Specifically, finite element methods have been developed to calculate electrostatic interactions and ligand binding rate constants for large biomolecules. The resulting(More)
  • 1