Learn More
In many gram negative bacilli, AmpD plays a key role in both cell well-recycling pathway and β-lactamase regulation, inactivation of the ampD causes the accumulation of 1,6-anhydromuropeptides, and results in the ampC overproduction. In Yersinia enterocolitica, the regulation of ampC expression may also rely on the ampR-ampC system, the role of AmpD in this(More)
The outer membrane protein A (OmpA) is one of the intra-species conserved proteins with immunogenicity widely found in the family of Enterobacteriaceae. Here we first confirmed OmpA is conserved in the three pathogenic Yersinia: Yersinia pestis, Yersinia pseudotuberculosis and pathogenic Yersinia enterocolitica, with high homology at the nucleotide level(More)
API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for(More)
Bacteriophages and their hosts are continuously engaged in evolutionary competition. Here we isolated a lytic phage phiYe-F10 specific for Yersinia enterocolitica serotype O:3. We firstly described the phage receptor was regulated by DTDP-rhamnosyl transferase RfbF, encoded within the rfb cluster that was responsible for the biosynthesis of the O antigens.(More)
BACKGROUND Plague, a Yersinia pestis infection, is a fatal disease with tremendous transmission capacity. However, the mechanism of how the pathogen stays in a reservoir, circulates and then re-emerges is an enigma. METHODOLOGY/PRINCIPAL FINDINGS We studied a plague outbreak caused by the construction of a large reservoir in southwest China followed(More)
  • 1