Yuhuai Wu

Learn More
In this paper, we systematically analyse the connecting architectures of recurrent neural networks (RNNs). Our main contribution is twofold: first, we present a rigorous graph-theoretic framework describing the connecting architectures of RNNs in general. Second, we propose three architecture complexity measures of RNNs: (a) the recurrent depth, which(More)
We introduce a weight update formula that is expressed only in terms of firing rates and their derivatives and that results in changes consistent with those associated with spike-timing dependent plasticity (STDP) rules and biological observations, even though the explicit timing of spikes is not needed. The new rule changes a synaptic weight in proportion(More)
We introduce a general and simple structural design called " Multiplicative Integration " (MI) to improve recurrent neural networks (RNNs). MI changes the way in which information from difference sources flows and is integrated in the computational building block of an RNN, while introducing almost no extra parameters. The new structure can be easily(More)
We investigate the parameter-space geometry of recurrent neural networks (RNNs), and develop an adaptation of path-SGD optimization method, attuned to this geometry, that can learn plain RNNs with ReLU activations. On several datasets that require capturing long-term dependency structure, we show that path-SGD can significantly improve trainability of ReLU(More)
  • 1