Learn More
Microglia are cells from non-neuronal lineages that reside in the central nervous system. In zebrafish, early macrophages migrate from the yolk sac to the brain and retina at 26-30 hour post fertilization (hpf) and transform into microglia at 55-60 hpf. The migration of macrophages into the central nervous system requires signaling by macrophage colony(More)
The zebrafish (Danio rerio) has recently become a mainstream model system for genetic studies of human diseases, such as neurological degenerative diseases, heart diseases, immuno-system disorders, etc. In this article, we will review some recent findings of the usefulness of zebrafish as a model vertebrate for behavioral screening of mutations in(More)
The zebrafish has the potential to regenerate many of its tissues. In this study, we examined caudal fin regeneration in zebrafish that received repeated injuries (fin amputation) at different ages. In zebrafish that received repeated injuries, the potential for caudal fin regeneration, such as tissue growth and the expression of regeneration marker genes(More)
Their antiangiogenic effects make vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors useful for cancer treatment. However, most of these drugs have unexpected adverse side effects. Here, we show that the novel VEGFR2 inhibitor YLL545 suppressed tumor angiogenesis and growth in triple-negative breast cancer without adverse effects. YLL545(More)
Demyelinating diseases consist of a variety of autoimmune conditions in which the myelin sheath is damaged due to genetic and/or environmental factors. During clinical treatment, some patients undergo partial remyelination, especially during the early disease stages. However, the mechanisms that regulate demyelination remain unclear. The myelin structure,(More)
A series of new Pt(II) diimine complexes with different carbazolyl-capped acetylide ligands (Pt-1–Pt-5) were synthesized and characterized. Their photophysical properties were investigated systematically via spectroscopic and theoretical methods. All complexes exhibit ligand-centered 1π,π* transitions in the UV region, and broad, structureless(More)
A series of Pt(II) bipyridyl complexes with different aryl substituents (Ar = naphthyl (1a), anthryl (1b), pyrenyl (1c) and phenothiazyl (1d)) on the fluorenylacetylide ligands are synthesized and investigated. The influence of the aryl substituent on the photophysics of these complexes is systematically investigated by spectroscopic methods and simulated(More)
  • 1