Learn More
  • Christine Guo Lian, Yufei Xu, Craig Ceol, Feizhen Wu, Allison Larson, Karen Dresser +25 others
  • 2012
DNA methylation at the 5 position of cytosine (5-mC) is a key epigenetic mark that is critical for various biological and pathological processes. 5-mC can be converted to 5-hydroxymethylcytosine (5-hmC) by the ten-eleven translocation (TET) family of DNA hydroxylases. Here, we report that "loss of 5-hmC" is an epigenetic hallmark of melanoma, with(More)
Ten-Eleven Translocation (Tet) family of dioxygenases dynamically regulates DNA methylation and has been implicated in cell lineage differentiation and oncogenesis. Yet their functions and mechanisms of action in gene regulation and embryonic development are largely unknown. Here, we report that Xenopus Tet3 plays an essential role in early eye and neural(More)
Dynamic histone H3K4 methylation is an important epigenetic component of transcriptional regulation. However, most of our current understanding of this histone mark is confined to the regulation of transcriptional initiation. We now show that human LSD2/KDM1b/AOF1, the human homolog of LSD1, is an H3K4me1/2 demethylase that specifically regulates histone(More)
The genome-wide distribution patterns of the '6th base' 5-hydroxymethylcytosine (5hmC) in many tissues and cells have recently been revealed by hydroxymethylated DNA immunoprecipitation (hMeDIP) followed by high throughput sequencing or tiling arrays. However, it has been challenging to directly compare different data sets and samples using data generated(More)