Learn More
Lysobacter are ubiquitous environmental bacteria emerging as novel biocontrol agents and new sources of anti-infectives. So far, very little effort has been invested in the study of the biology of these Gram-negative gliding bacteria. Many Lysobacter species are characterized by their yellow-orange appearance. Using transposon mutagenesis, we identified a(More)
Social motility (S motility), the coordinated movement of large cell groups on agar surfaces, of Myxococcus xanthus requires type IV pili (TFP) and exopolysaccharides (EPS). Previous models proposed that this behavior, which only occurred within cell groups, requires cycles of TFP extension and retraction triggered by the close interaction of TFP with EPS.(More)
One intriguing discovery in modern microbiology is the extensive presence of extracellular DNA (eDNA) within biofilms of various bacterial species. Although several biological functions have been suggested for eDNA, including involvement in biofilm formation, the detailed mechanism of eDNA integration into biofilm architecture is still poorly understood. In(More)
Exopolysaccharide (EPS) of Myxococcus xanthus is a well-regulated cell surface component. In addition to its known functions for social motility and fruiting body formation on solid surfaces, EPS has also been proposed to play a role in multi-cellular clumping in liquid medium, though this phenomenon has not been well studied. In this report, we confirmed(More)
As prokaryotic models for multicellular development, Stigmatella aurantiaca and Myxococcus xanthus share many similarities in terms of social behaviors, such as gliding motility. Our current understanding of myxobacterial grouped-cell motilities comes mainly from the research on M. xanthus, which shows that filamentous type IV pili (TFP), composed of type(More)
Myxococcus xanthus performs coordinated social motility of cell groups through the extension and retraction of type IV pili (TFP) on solid surfaces, which requires both TFP and exopolysaccharides (EPS). By submerging cells in a liquid medium containing 1% methylcellulose, M. xanthus TFP-driven motility was induced in isolated cells and independently of EPS.(More)
Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold(More)
  • 1