Learn More
In the developing CNS, Notch1 and its ligand, Jagged1, regulate oligodendrocyte differentiation and myelin formation, but their role in repair of demyelinating lesions in diseases such as multiple sclerosis remains unresolved. To address this question, we generated a mouse model in which we targeted Notch1 inactivation to oligodendrocyte progenitor cells(More)
The cytokines interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) induce interleukin-6 (IL-6) gene expression in astrocytes. The molecular mechanism(s) by which these cytokines activate IL-6 expression was examined by transient transfection of the human IL-6 promoter linked to the reporter gene CAT (IL-6-CAT) in primary rat(More)
This paper describes a new role for the cysteine-cysteine (CC) chemokines RANTES, MIP-1alpha, and MIP-1beta on human macrophage function, which is the induction of nitric oxide (NO)-mediated trypanocidal activity. In a previous report, we showed that RANTES, MIP-1alpha and MIP-1beta enhance Trypanosoma cruzi uptake and promote parasite killing by human(More)
Loss of blood-brain barrier (BBB) integrity is believed to be an early and significant event in lesion pathogenesis in the inflammatory demyelinating disease multiple sclerosis (MS), and understanding mechanisms involved may lead to novel therapeutic avenues for this disorder. Well-differentiated endothelium forms the basis of the BBB, while astrocytes(More)
Multiple sclerosis (MS) is a chronic and devastating autoimmune demyelinating disease of the central nervous system. With the increased understanding of the pathophysiology of this disease in the past two decades, many disease-modifying therapies that primarily target adaptive immunity have been shown to prevent exacerbations and new lesions in patients(More)
Mechanisms that regulate oligodendrocyte survival and myelin formation are an intense focus of research into myelin repair in the lesions of multiple sclerosis (MS). Although demyelination and oligodendrocyte loss are pathological hallmarks of the disease, increased oligodendrocyte numbers and remyelination are frequently observed in early lesions, but(More)
Leishmania is a genus of parasitic protozoa capable of causing a spectrum of human diseases. The GP46/M-2 membrane glycoprotein has been demonstrated in a murine model system to elicit a protective immune response against infection with Leishmania amazonensis; in highly susceptible BALB/c mice, immunization leads to significant protection against infection.(More)
Current therapies for the autoimmune demyelinating disease multiple sclerosis (MS) target inflammation, but do not directly address neuroprotection or lesion repair. Cytokines of the gp130 family regulate survival and differentiation of both neural and immune cells, and we recently identified expression of the family member IL-11 in active MS plaques. In(More)
To investigate the role of interleukin-5 (IL-5) during Toxoplasma gondii infection, IL-5 knockout (KO) mice and C57BL/6 control mice were infected intraperitoneally with ME49 cysts and the course of infection was monitored. The mortality rate during chronic infection was significantly greater in IL-5-deficient animals, and consistent with this finding, the(More)
Ehrlichia sennetsu is the causative agent of human Sennetsu ehrlichiosis. Heat shock protein 60 (HSP60) and HSP70 (DnaK) are two major bacterial HSPs, and their interaction modulates the stress response. Previously, we cloned and sequenced groE and expressed groEL of E. sennetsu. HSP60 (GroEL) was immunogenic and cross-reactive in Ehrlichia spp. The present(More)