Learn More
We theoretically investigate the above-threshold ionization of hydrogen atoms driven by few-cycle phase jump laser pulses. By numerically solving the three-dimensional time-dependent Schrödinger equation, we demonstrate that the phase jump plays an important role in the ionization process. The cutoff of the photoelectron energy spectrum can extend to a(More)
We propose a scheme for obtaining an electromagnetically induced grating in an asymmetric semiconductor quantum well (QW) structure via Fano interference. In our structure, owing to Fano interference, the diffraction intensity of the grating, especially the first-order diffraction, can be significantly enhanced. The diffraction efficiency of the grating can(More)
A scheme for giant enhancement of the Kerr nonlinearity in a four-level system with double dark resonances is proposed. Compared with that generated in a single-dark-resonance system, the Kerr nonlinearity can be enhanced by several orders of magnitude with vanishing linear absorption. We attribute this dramatic enhancement to the interaction of dark(More)
We theoretically investigate the high-order harmonic generation driven by laser pulses with a π-phase jump. The cutoff of high-order harmonic spectrum extends dramatically due to the phase jump which enlarges the asymmetry of the laser field. We find that the intensity and the coherence of the continuum can be controlled by the jump time. By selecting(More)
Quantum controlled-phase-flip (CPF) gate between a flying photon qubit and a stationary atomic qubit could allow the linking of distant computational nodes in a quantum network. Here we present a scheme to realize quantum CPF gate between a flying optical photon and an atomic ensemble based on cavity input-output process and Rydberg blockade. When a flying(More)
We have demonstrated laser frequency offset locking via the Rb87 tripod-type double-dark resonances electromagnetically induced transparency (EIT) system. The influence of coupling fields' power and detuning on the tripod-type EIT profile is studied in detail. In a wide coupling field's detuning range, the narrower EIT dip has an ultranarrow linewidth of(More)
The propagation behaviors, which include the carrier-envelope phase, the area evolution and the solitary pulse number of few-cycle pulses in a dense two-level medium, are investigated based on full-wave Maxwell-Bloch equations by taking Lorentz local field correction (LFC) into account. Several novel features are found: the difference of the(More)
The spectral minima in harmonic spectra of H2+ induced by mid-infrared laser pulses are numerically investigated based on two models of Born-Oppenheimer (BO) and non-Born-Oppenheimer (NBO) approximations. The simulation results show that, with the variation of the mid-infrared laser's carrier-envelope phase (CEP), the spectral minima positions (SMPs) are(More)
We propose a scheme to generate quantum entangling gate using one-dimensional surface plasmon waveguide. The protocol is based on the detection of the transmission spectrum of the single optical plasmons passing through two separate three-level emitters on metallic nanowire waveguide. It is shown that the low efficiency in direct detection of the single(More)