Learn More
The ethanol flame was successfully used to synthesize highly graphitic hollow-cored carbon nanotubes (CNTs) and novel disorder solid-cored carbon nanofibers (CNFs). Their morphologies were characterized by using scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy and Raman spectroscopy. It was(More)
In recent years, the ternary boron carbonitride (BCN) nanotubes have attracted increasing interests because of their unique electronic properties and potential technological applications. A prime advantage of the BCN nanotubes over their carbon counterparts is the relative simplicity in manipulating the electronic structures. Theoretical calculations have(More)
In the past decades, ferroelectric materials have attracted wide attention due to their applications in nonvolatile memory devices (NVMDs) rendered by the electrically switchable spontaneous polarizations. Furthermore, the combination of ferroelectric and nanomaterials opens a new route to fabricating a nanoscale memory device with ultrahigh memory(More)
Until now, it is a great challenge for the controllable synthesis of copper antimony sulfide (CAS) nanocrystals (NCs), as the reactivity of precursors is quite difficult to be controlled during the synthesis process. In the present work, a novel solution-based method is proposed to synthesize CAS NCs by choosing N,N'-diphenylthiourea as the sulfide(More)
Multinary copper-based metal sulfide (Cu-M-S) nanocrystals (NCs) usually have high absorption coefficients and near-optimum direct band gaps, which have been considered as novel photo-absorption materials for quantum dot-sensitized solar cells (QDSCs) and hole-transport materials for perovskite solar cells (PSCs). However, the formation and phase(More)
Few-layer graphene/TiO2 nanocrystal composites are successfully in situ synthesized at a low temperature of 400 °C using C28H16Br2 as the precursor. Raman mapping images show that the TiO2 nanocrystals are very uniformly dispersed in the composite films, and the in situ coating during the thermal decomposition process will favor the formation of a good(More)
Absorbed oxygen plays a key role in gas sensing process of ZnO nanomaterials. In this work, the transformation of absorbed oxygen on ZnO (101̅0) and its effects on gas sensing properties to ethanol are studied by a novel thermal pulse method and density functional theory (DFT) simulation. Thermal pulse results reveal that the absorbed O2 molecule(More)
  • 1