Yuelan Zhang

Learn More
Adrenomedullin (AM) is a novel vasodilating peptide involved in the regulation of circulatory homeostasis and implicated in the pathophysiology of cardiovascular disease. We tested the hypothesis that AM also possesses angiogenic properties. Using laser Doppler perfusion imaging, we found that AM stimulated recovery of blood flow to the affected limb in the(More)
Single-walled carbon nanotubes (SWNTs) were effectively dispersed and functionalized by wrapping with single-stranded DNA (ssDNA). The ssDNA-SWNTs attach strongly on glass substrate and easily form a uniform film, making it possible for electrochemical analysis and sensing. The film was fabricated into a working electrode, which exhibited good(More)
BACKGROUND Adrenomedullin (AM) is a novel vasodilating peptide thought to have important effects on cardiovascular function. The aim of this study was to assess the activity of endogenous AM in the cardiovascular system using AM knockout mice. METHODS AND RESULTS Mice heterozygous for an AM-null mutation (AM+/-) and their wild-type littermates were(More)
Adrenomedullin (AM) is a potent vasodilating and natriuretic peptide that is thought to play important roles in cardiovascular function. Whether or not AM is involved in the development of cardiac hypertrophy and renal damage remains controversial. In the present study, using heterozygote knockout mice of the AM gene (AM +/-), we analyzed the physiological(More)
We report 1H-1,2,3-triazole as an active group to dramatically enhance proton conduction in a polymer electrolyte membrane (PEM). The conductivities of a poly(4-vinyl-1H-1,2,3-triazole) membrane without any acidic dopants are about 105 times greater than those of poly(4-vinylimidazole) in dry air at 50-150 degrees C. Polymers with groups promoting proton(More)
Ultrathin cation-exchanged layered metal oxides are promising for many applications, while such substances are barely successfully synthesized to show several atomic layer thickness, owing to the strong electrostatic force between the adjacent layers. Herein, we took LiCoO2, a prototype cation-exchanged layered metal oxide, as an example to study. By(More)
Developing new methods to synthesize intermetallics is one of the most critical issues for the discovery and application of multifunctional metal materials; however, the synthesis of Sn-containing intermetallics is challenging. In this work, we demonstrated for the first time that a self-disproportionation-induced in situ process produces cavernous Sn-Cu(More)
  • 1