Learn More
A local linear wavelet neural network (LLWNN) is presented in this paper. The difference of the network with conventional wavelet neural network (WNN) is that the connection weights between the hidden layer and output layer of conventional WNN are replaced by a local linear model. A hybrid training algorithm of particle swarm optimization (PSO) with(More)
Time-series forecasting is an important research and application area. Much effort has been devoted over the past several decades to develop and improve the time-series forecasting models. This paper introduces a new time-series forecasting model based on the flexible neural tree (FNT). The FNT model is generated initially as a flexible multi-layer(More)
Grid computing is a high performance computing environment to solve larger scale computational demands. Grid computing contains resource management, task scheduling, security problems, information management and so on. Task scheduling is a fundamental issue in achieving high performance in grid computing systems. However, it is a big challenge for efficient(More)
The use of intelligent systems for stock market predictions has been widely established. In this paper, we investigate how the seemingly chaotic behavior of stock markets could be well represented using Flexible Neural Tree (FNT) ensemble technique. We considered the Nasdaq-100 index of Nasdaq Stock Market and the S&P CNX NIFTY stock index. We analyzed(More)
An intrusion is defined as a violation of the security policy of the system, and, hence, intrusion detection mainly refers to the mechanisms that are developed to detect violations of system security policy. Current intrusion detection systems ~IDS! examine all data features to detect intrusion or misuse patterns. Some of the features may be redundant or(More)
Current Intrusion Detection Systems (IDS) examine all data features to detect intrusion or misuse patterns. Some of the features may be redundant or contribute little (if anything) to the detection process. The purpose of this study is to identify important input features in building an IDS that is computationally efficient and effective. This paper(More)
This paper introduces a flexible neural tree model. The model is computed as a flexible multi-layer feed-forward neural network. A hybrid learning/evolutionary approach to automatically optimize the neural tree model is also proposed. The approach includes a modified probabilistic incremental program evolution algorithm (MPIPE) to evolve and determine a(More)
Kraft lignin (KL) is the major pollutant in black liquor. The bacterial strain Pandoraea sp. B-6 was able to degrade KL without any co-substrate under high alkaline conditions. At least 38.2 % of chemical oxygen demand and 41.6 % of color were removed in 7 days at concentrations from 1 to 6 g L(-1). The optimum pH for KL degradation was 10 and the optimum(More)
A flexible neural network (FNN) is a multilayer feedforward neural network with the characteristics of: (1) overlayer connections; (2) variable activation functions for different nodes and (3) sparse connections between the nodes. A new approach for designing the FNN based on neural tree encoding is proposed in this paper. The approach employs the ant(More)
This paper presents a local linear wavelet neural network. The difference of the network with the original wavelet neural network is that the connection weights between the hidden layer and output layer of the original WNN are replaced by a local linear model. A simple and fast training algorithm, particle swarm optimization (PSO), is also introduced for(More)