Yuechun Shi

  • Citations Per Year
Learn More
An eight-wavelength distributed feedback semiconductor laser array with λ/4 equivalent phase shift based on reconstruction-equivalent-chirp technique was demonstrated. It shows very good linearity in lasing wavelengths with its deviation from -0.22 to 0.20 nm. The threshold currents are between 19 and 24 mA. The side-mode suppression ratios are all larger(More)
In this paper we report, to the best of our knowledge, the first experimental realization of distributed feedback (DFB) semiconductor lasers based on reconstruction-equivalent-chirp (REC) technology. Lasers with different lasing wavelengths are achieved simultaneously on one chip, which shows a potential for the REC technology in combination with the(More)
Multi-wavelength semiconductor laser arrays (MLAs) have wide applications in wavelength multiplexing division (WDM) networks. In spite of their tremendous potential, adoption of the MLA has been hampered by a number of issues, particularly wavelength precision and fabrication cost. In this paper, we report high channel count MLAs in which the wavelengths of(More)
Efficient narrowband light absorption by a metal-insulator-metal (MIM) structure can lead to high-speed light-to-heat conversion at a micro- or nanoscale. Such a MIM structure can serve as a heater for achieving all-optical light control based on the thermo-optical (TO) effect. Here we experimentally fabricated and characterized a novel all-optical switch(More)
An optically pumped thermo-optic (TO) silicon ring add-drop filter with fast thermal response is experimentally demonstrated. We propose that metal-insulator-metal (MIM) light absorber can be integrated into silicon TO devices, acting as a localized heat source which can be activated remotely by a pump beam. The MIM absorber design introduces less thermal(More)
A three phase shifted (3PS) distributed feedback (DFB) semiconductor laser based on Reconstruction-Equivalent-Chirp (REC) technique is experimentally demonstrated for the first time. The simulation results show that the performances of the equivalent 3PS DFB semiconductor laser are nearly the same as that of the true 3PS laser. However, it only changes the(More)
Based on direct photonic generation of a beat signal, a simple hybrid wire-wireless fiber laser sensor is proposed. In the sensor, an improved multilongitudinal modes fiber laser cavity is set up by only a fiber Bragg grating, a section of erbium-doped fiber, and a broadband reflector. A photodetector is used to detect the electrical beat signal. Next, the(More)
Bragg waveguide grating is one of the most important structures for on-chip light control. In order to achieve specific optical performances, the grating structure should be well designed with fine structures. Recently, reconstruction equivalent chirp (REC) technique is proposed. The optical response can be controlled by designing the sampling pattern with(More)
We review here our recent studies on plasmonic enhanced photothermal effects in metallic nanostructure, and the applications of such effects. When light is shined on a prefect metamaterial absorber patterned with e-beam lithography, the gold nanoparticles (NPs) forming the absorber can be either transformed to nano-spherical-domes, or to(More)
An anti-symmetrically sampled Bragg grating (ASBG) with single mode waveguide is proposed and investigated for the first time. Based on anti-symmetric periodic structure, the coupling coefficient between the forward and backward guided modes becomes zero, thus nearly no light is reflected. Besides, the equivalent tilted grating effect with radiation mode(More)