#### Filter Results:

#### Publication Year

2004

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

#### Data Set Used

Learn More

The spectral theory of graphs provides a bridge between classical signal processing and the nascent field of graph signal processing. In this paper, a spectral graph analogy to Heisenberg's celebrated uncertainty principle is developed. Just as the classical result provides a tradeoff between signal localization in time and frequency, this result provides a… (More)

- Yue M. Lu, Minh N. Do
- ICIP
- 2006

The contourlet transform was proposed as a directional mul-tiresolution image representation that can efficiently capture and represent singularities along smooth object boundaries in natural images. Its efficient filter bank construction as well as low redundancy make it an attractive computational framework for various image processing applications.… (More)

With the ever increasing computational power of modern day processors, it has become feasible to use more robust and computationally complex algorithms that increase the resolution of images without distorting edges and contours. We present a novel image interpolation algorithm that uses the new contourlet transform to improve the regularity of object… (More)

We study a new image sensor that is reminiscent of a traditional photographic film. Each pixel in the sensor has a binary response, giving only a 1-bit quantized measurement of the local light intensity. To analyze its performance, we formulate the oversampled binary sensing scheme as a parameter estimation problem based on quantized Poisson statistics. We… (More)

Recent advances in materials, devices and fabrication technologies have motivated a strong momentum in developing solid-state sensors that can detect individual photons in space and time. It has been envisioned that such sensors can eventually achieve very high spatial resolutions (e.g., 10 9 pixels/chip) as well as high frame rates (e.g., 10 6 frames/sec).… (More)

—One of the fundamental assumptions in traditional sampling theorems is that the signals to be sampled come from a single vector space (e.g., bandlimited functions). However, in many cases of practical interest the sampled signals actually live in a union of subspaces. Examples include piecewise polynomials, sparse representations, nonuniform splines,… (More)

—In a variety of fields, in particular those involving imaging and optics, we often measure signals whose phase is missing or has been irremediably distorted. Phase retrieval attempts the recovery of the phase information of a signal from the magnitude of its Fourier transform to enable the reconstruction of the original signal. A fundamental question then… (More)

We consider the problem of estimating room geometry from the acoustic room impulse response (RIR). Existing approaches addressing this problem exploit the knowledge of multiple RIRs. In contrast, we are interested in reconstructing the room geometry from a single RIR — a 1–D function of time. We discuss the uniqueness of the mapping between the geometry of… (More)

We propose a randomized version of the nonlocal means (NLM) algorithm for large-scale image filtering. The new algorithm, called Monte Carlo nonlocal means (MCNLM), speeds up the classical NLM by computing a small subset of image patch distances, which are randomly selected according to a designed sampling pattern. We make two contributions. First, we… (More)

In 1992, Bamberger and Smith proposed the directional filter bank (DFB) for an efficient directional decomposition of 2-D signals. Due to the nonseparable nature of the system, extending the DFB to higher dimensions while still retaining its attractive features is a challenging and previously unsolved problem. We propose a new family of filter banks, named… (More)