Learn More
One of the fundamental assumptions in traditional sampling theorems is that the signals to be sampled come from a single vector space (e.g., bandlimited functions). However, in many cases of practical interest the sampled signals actually live in a union of subspaces. Examples include piecewise polynomials, sparse representations, nonuniform splines,(More)
In 1992, Bamberger and Smith proposed the directional filter bank (DFB) for an efficient directional decomposition of 2-D signals. Due to the nonseparable nature of the system, extending the DFB to higher dimensions while still retaining its attractive features is a challenging and previously unsolved problem. We propose a new family of filter banks, named(More)
The contourlet transform was proposed as a directional multiresolution image representation that can efficiently capture and represent singularities along smooth object boundaries in natural images. Its efficient filter bank construction as well as low redundancy make it an attractive computational framework for various image processing applications.(More)
We study a new image sensor that is reminiscent of a traditional photographic film. Each pixel in the sensor has a binary response, giving only a 1-bit quantized measurement of the local light intensity. To analyze its performance, we formulate the oversampled binary sensing scheme as a parameter estimation problem based on quantized Poisson statistics. We(More)
The spectral theory of graphs provides a bridge between classical signal processing and the nascent field of graph signal processing. In this paper, a spectral graph analogy to Heisenberg's celebrated uncertainty principle is developed. Just as the classical result provides a tradeoff between signal localization in time and frequency, this result provides a(More)
—In a variety of fields, in particular those involving imaging and optics, we often measure signals whose phase is missing or has been irremediably distorted. Phase retrieval attempts the recovery of the phase information of a signal from the magnitude of its Fourier transform to enable the reconstruction of the original signal. A fundamental question then(More)
With the ever increasing computational power of modern day processors, it has become feasible to use more robust and computationally complex algorithms that increase the resolution of images without distorting edges and contours. We present a novel image interpolation algorithm that uses the new contourlet transform to improve the regularity of object(More)
Imagine that you are blindfolded inside an unknown room. You snap your fingers and listen to the room's response. Can you hear the shape of the room? Some people can do it naturally, but can we design computer algorithms that hear rooms? We show how to compute the shape of a convex polyhedral room from its response to a known sound, recorded by a few(More)
We study the spatiotemporal sampling of a diffusion field generated by K point sources, aiming to fully reconstruct the unknown initial field distribution from the sample measurements. The sampling operator in our problem can be described by a matrix derived from the diffusion model. We analyze the important properties of the sampling matrices, leading to(More)
Joint processing of visible (RGB) and near-infrared (NIR) images has recently found some appealing applications, which make joint capturing a pair of visible and NIR images an important problem. In this paper, we propose a new method to design color filter arrays (CFA) and demosaicing matrices for acquiring NIR and visible images using a single sensor. The(More)