Yuba R Bhandari

Learn More
The development of fluorescent proteins (FPs) has revolutionized cell biology research. The monomeric variants of red fluorescent proteins (RFPs), known as mFruits, have been especially valuable for tagging and tracking cellular processes in vivo. Determining oxygen diffusion pathways in FPs can be important for improving photostability and for(More)
Riboswitches are structural RNA elements that are generally located in the 5' untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to(More)
The C-terminal domain (CTD) of the transcription antiterminator RfaH folds to an α-helix bundle when it interacts with its N-terminal domain (NTD) but it undergoes an all-α to all-β conformational transformation when it does not interact with the NTD. The RfaH-CTD in the all-α topology is involved in regulating transcription whereas in the all-β topology it(More)
Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's, and others. Although proteins that undergo aggregation vary widely in their primary structure, they all produce a cross-β motif with the proteins in β-strand conformations perpendicular to the fibril axis. The process of(More)
Detailed understanding of the structure and function relationship of RNA requires knowledge about RNA three-dimensional (3D) topological folding. However, there are very few unique RNA entries in structure databases. This is due to challenges in determining 3D structures of RNA using conventional methods, such as X-ray crystallography and NMR spectroscopy,(More)
Structures of the four reaction states of the adenine riboswitch aptamer domain, including a transient intermediate state were solved by serial femtosecond crystallography. The structures not only demonstrate the use of X-ray free electron lasers for RNA crystallography but have also proven that transient states can be determined in real time by(More)
The folding and dimerization of proteins is greatly facilitated by the presence of a trigger site, a segment of amino acids that has a higher propensity for forming α-helix structure as compared to the rest of the chain. In addition to the helical propensity of each chain, dimerization can also be facilitated by interhelical interactions such as(More)
Whereas the structures of small to medium-sized well folded RNA molecules often can be determined by either X-ray crystallography or NMR spectroscopy, obtaining structural information for large RNAs using experimental, computational, or combined approaches remains a major interest and challenge. RNA is very sensitive to small-angle X-ray scattering (SAXS)(More)
Thermodynamic parameters such as free energies and heat capacities are important quantities for understanding processes involving structural transitions in complex molecules such as proteins. Computational investigations provide simulated data that can be used for calculating thermodynamic parameters. However, calculations give accurate results only if the(More)
The helix-coil transition in peptides is a critical structural transition leading to functioning proteins. Peptide chains have a large number of possible configurations that must be accounted for in statistical mechanical investigations. Using hydrogen bond and local helix propensity interaction terms, we develop a method for obtaining and incorporating the(More)
  • 1