Yuankun Lin

Learn More
We report the holographic fabrication of designed defect lines in photonic crystal lattices through phase engineering using a spatial light modulator (SLM). The diffracted beams from the SLM not only carry the defect's content but also the defect related phase-shifting information. The phase-shifting induced lattice shifting in photonic lattices around the(More)
Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can(More)
In this paper, we have systematically studied the holographic fabrication of three-dimensional (3D) structures using a single 3D printed reflective optical element (ROE), taking advantage of the ease of design and 3D printing of the ROE. The reflective surface was setup at non-Brewster angles to reflect both sand p-polarized beams for the interference. The(More)
1 We have designed, fabricated and characterized dual-wavelength metasurfaces that function at two assigned terahertz wavelengths with independent phase and amplitude control at each wavelength. Specifically, we have designed a dual-wavelength achromatic metasurface-based deflector deflecting the incident wave to the same direction at two selected(More)
In this paper, the state-of-the-art quasi-conformal mapping (QCM) transformation optics technique is studied to design high performance electromagnetic devices which can be widely applied in the fields of microwaves and optics. At first, novel plasmonic wave manipulator is designed, which can manipulate the transmission of plasmonic waves efficiently.(More)
  • 1