Yuanjie Huang

Learn More
Iterative optimization is a popular compiler optimization approach that has been studied extensively over the past decade. In this article, we deconstruct iterative optimization by evaluating whether it works across datasets and by analyzing why it works. Up to now, most iterative optimization studies are based on a premise which was never truly evaluated:(More)
Computer scientists are always eager to have a powerful, robust and stable compiler infrastructure. However, until recently, researchers had to either use available and often unstable research compilers, create new ones from scratch, try to hack open-source non-research compilers or use source to source tools. It often requires duplication of a large amount(More)
While iterative optimization has become a popular compiler optimization approach, it is based on a premise which has never been truly evaluated: that it is possible to learn the best compiler optimizations across data sets. Up to now, most iterative optimization studies find the best optimizations through repeated runs on the same data set. Only a handful(More)
A systematic study on the interaction of silica nanoparticles (NPs) with human cells has been carried out in the present work. Endocytosis and exocytosis are identified as major pathways for NPs entering, and exiting the cells, respectively. Most of the NPs are found to be enclosed in membrane bounded organelles, which are fairly stable (against rupture) as(More)
Vital technology trends such as voltage scaling and homogeneous multicore scaling have reached their limits and architects turn to alternate computing paradigms, such as heterogeneous and domain-specialized solutions. Coarse-Grain Reconfigurable Arrays (CGRAs) promise the performance of massively spatial computing while offering interesting trade-offs of(More)
Titanium dioxide has attracted considerable interest as a prototypical semiconductor photocatalyst. However, because of the relative large bandgap energy, further application of TiO2 photocatalyst is limited by its inefficient solar energy conversion. Various attempts have been made to broaden the light absorption window of the TiO2, such as growth of(More)
The eradication of Helicobacter pylori (H. pylori) with antibiotics induces complete remission in 75% of patients with gastric MALT lymphoma. We investigated the efficacy of H. pylori eradication and assessed the predictive value of BCL10 nuclear expression and t(11;18)(q21;q21) regarding resistance to H. pylori eradication in primary gastric(More)
Castration-resistant prostate cancer (CRPC) is the main challenge for prostate cancer treatment. Recent studies have indicated that extending the treatments to simultaneously targeting different pathways could provide better approaches. To better understand the regulatory functions of different pathways, a system-wide study of CRPC regulation is necessary.(More)
Because of tight power and energy constraints, industry is progressively shifting toward <i>heterogeneous</i> system-on-chip (SoC) architectures composed of a mix of general-purpose cores along with a number of accelerators. However, such SoC architectures can be very challenging to efficiently program for the vast majority of programmers, due to numerous(More)
We disclosed a specific biological pathway for the observed cell damage when stimulated by the crystalline SiO(2) nanoparticles (NPs), i.e., both mitochondrion multiplication and DNA fragmentation occur upon the initial reactive oxygen species (ROS) generation, with the former causing further increases of the ROS level in the cell, and eventually leads to(More)