Yuanjiang Li

Learn More
Due to the fact that the imaging distance is similar to the dimension of synthetic aperture antenna in near-field, the Fourier imaging theory used in the traditional synthetic aperture imaging radiometer (SAIR), which is based on the far-field approximation, is invalid for near-field synthetic aperture imaging. This paper is devoted to establishing an(More)
Since the characters of poor inherent resolution and low signal-to-noise limit the application of the passive millimeter wave (PMMW) image, it is particularly important to improve the resolution and denoise the PMMW image. In this paper, the adaptive manifolds filtering algorithm based on non-local means (AM-NLM) is illustrated in detail. And an improved(More)
In this work a new version of block-matching and 3D filtering (BM3D) denoising approach introduced by Dabov et al. for denoising the image corrupted by additive white Gassian noise is proposed. The BM3D performs collaborative filtering to the 3D image groups composed by similar image blocks with the fixed hard-thresholding operator. The proposed version of(More)
In order to improve the reconstruction accuracy of near-field SAIR, a novel regularization imaging algorithm based on an accurate G matrix is proposed in this paper. Due to the fact that the regularization reconstruction is usually an underdetermined problem, inaccurate operation matrix G will lead to great reconstruction error in the imaging results, or(More)
The Compressive Sensing (CS) approach has proven to be useful for Synthetic Aperture Interferometric Radiometer (SAIR) imaging because it provides the same high-resolution capability while using part of interferometric observations compared to traditional methods using the entirety. However, it cannot always obtain the sparsest solution and may yield(More)
  • 1