Yuanfei Zhou

Learn More
The directed differentiation of mesenchymal stem cells (MSCs) is tightly controlled by a complex network. Wnt signaling pathways have an important function in controlling the fate of MSCs. However, the mechanism through which Wnt/β-catenin signaling is regulated in differentiation of MSCs remains unknown. SIRT1 plays an important role in the regulation of(More)
Adipogenesis is tightly controlled by a complex network of transcription factors acting at different stages of differentiation. Kruppel-like factors (KLFs) as a family of zinc-finger transcription factors play diverse roles during cell differentiation and development in mammals. In the present study, we showed that KLF13 acts as a key regulator regulating(More)
It has been proved that terminally differentiated mature adipocytes possess abilities to dedifferentiate into fibroblast-like progeny cells with self-renewal and multiple differentiation, termed dedifferentiated fat (DFAT) cells. However, the biological properties of DFAT cells during long-term culture in vitro have not been elucidated. Here, we obtained(More)
It is well known that adipose tissue has a critical role in the development of obesity and metabolic diseases and that adipose tissue acts as an endocrine organ to regulate lipid and glucose metabolism. Accumulating in the adipose tissue, fatty acids serve as a primary source of essential nutrients and act on intracellular and cell surface receptors to(More)
Adipose tissue is a key determinant of whole-body metabolism and energy homeostasis. Unravelling the transcriptional regulatory process during adipogenesis is therefore highly relevant from a biomedical perspective. In these studies, zinc finger protein B-cell lymphoma 6 (Bcl6) was demonstrated to have a role in early adipogenesis of mesenchymal stem cells.(More)
To investigate the effect of feeding a linseed-enriched diet to growing-finishing pigs on gene expression in skeletal muscle, pigs were fed with a linseed-enriched diet for 0, 30, 60 and 90 d. Transcriptional profiles of longissimus dorsi muscle were measured using Affymetrix Genechip. Results showed that 264 genes were identified as differentially(More)
The mammalian target of rapamycin complex 1 (mTORC1) integrates amino acid (AA) availability to support protein synthesis and cell growth. Taste receptor type 1 member (T1R) is a G protein-coupled receptor that functions as a direct sensor of extracellular AA availability to regulate mTORC1 through Ca2+ stimulation and extracellular signal-regulated kinases(More)
To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to(More)
The mammalian target of rapamycin (mTOR) is the central regulator of mammalian cell growth, and is essential for the formation of two structurally and functionally distinct complexes: mTORC1 and mTORC2. mTORC1 can sense multiple cues such as nutrients, energy status, growth factors and hormones to control cell growth and proliferation, angiogenesis,(More)
Numerous researches have demonstrated that GPR120 (also called FFAR4) exerts novel functions in insulin resistance and adipogenesis. However, the molecular mechanism of GPR120-mediated adipogenic differentiation is still unclear. This study was aimed to interpret the relevant function mechanism of GPR120 in the differentiation of 3T3-L1 adipocytes. The(More)