Yuan-ying Jiang

Learn More
Trehalose is a non-reducing disaccharide and can be accumulated in response to heat or oxidative stresses in Candida albicans. Here we showed that a C. albicans tps1Δ mutant, which is deficient in trehalose synthesis, exhibited increased apoptosis rate upon H(2)O(2) treatment together with an increase of intracellular Ca(2+) level and caspase activity. When(More)
Widespread and repeated use of azoles, particularly fluconazole, has led to the rapid development of azole resistance in Candida albicans. Overexpression of CDR1, CDR2, and CaMDR1 has been reported contributing to azole resistance in C. albicans. In this study, hyper-resistant C. albicans mutant, with the above three genes deleted, was obtained by exposure(More)
The present study aimed to determine whether Nicotiflorin, a natural flavonoid extracted from coronal of Carthamus tinctorius, has a protective effect on cerebral multi-infarct dementia in rats. The multi-infarct dementia model rats were prepared by injecting man-made micro-thrombi into the right hemisphere. The administration groups were treated once daily(More)
Candida albicans is the most common human fungal pathogen and has a high propensity to develop biofilms that are resistant to traditional antifungal agents. In this study, we investigated the effect of tetrandrine (TET) on growth, biofilm formation and yeast-to-hypha transition of C. albicans. We characterized the inhibitory effect of TET on hyphal growth(More)
Candida albicans is one of the most common fungal pathogen in humans due to its high frequency as an opportunistic and pathogenic fungus causing superficial as well as invasive infections in immunocompromised patients. An understanding of gene function in C. albicans is necessary to study the molecular basis of its pathogenesis, virulence and drug(More)
In Candida albicans, lipid rafts (also called detergent-resistant membranes, DRMs) are involved in many cellular processes and contain many important proteins. In our previous study, we demonstrated that Rta2p was required for calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Here, we found that Rta2p was(More)
Due to the emergence of drug-resistance, first-line therapy with fluconazole (FLC) increasingly resulted in clinical failure for the treatment of candidemia. Our previous studies found that in vitro RTA2 was involved in the calcineurin-mediated resistance to FLC in C. albicans. In this study, we found that calcium-activated-calcineurin significantly reduced(More)
Candida albicans is the most common cause of hematogenously disseminated candidiasis, and this disease is particularly prevalent in immunocompromised patients. The mortality of invasive candidiasis remains 40% to 50% even with the proper treatment with current antifungal drugs. Recently, with the better understanding of host-fungus interactions, notable(More)
Roemerine (RM) is an aporphine alkaloid isolated from the fresh rattan stem of Fibraurea recisa, and it has been demonstrated to have certain antifungal activity. This study aimed to investigate the antifungal activity of RM and the underlying mechanisms in Candida albicans (C. albicans). The in vitro antifungal activity of RM was evaluated by a series of(More)
Candida albicans is the most common human fungal pathogen. Recent evidence has revealed the occurrence of apoptosis in C. albicans that is inducible by environmental stresses such as hydrogen peroxide, acetic acid, and amphotericin B. Apoptosis is regulated by the calcineurin-caspase pathway in C. albicans, and calcineurin is under the control of Hsp90 in(More)