Learn More
Effectively bridging the lesion gap is still an unmet demand for spinal cord repair. In the present study, we tested our hypothesis if cograft of Schwann cells (SCs) and neural stem cells (NSCs) with genetically enhanced expression of neurotrophin-3 (NT-3) and its high affinity receptor TrkC, respectively, could strengthen neural repair through increased(More)
Previously we have demonstrated that a Rhodiola crenulata extract (RCE), containing a potent antioxidant salidroside, promotes neurogenesis in the hippocampus of depressive rats. The current study was designed to further investigate the protective effect of the RCE on neurogenesis in a rat model of Alzheimer's disease (AD) induced by an(More)
BACKGROUND Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however, the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow(More)
This study aims to investigate the effect of adenoviral vector-mediated neurotrophine-3 (NT-3) gene transfer and retinoic acid (RA) pretreatment on inducing neuronal differentiation of bone marrow mesenchymal stem cells (MSCs) in vitro. MSCs could be efficiently transduced by NT-3 gene via recombinant adenoviral vectors (Adv). Combination of AdvNT-3 and RA(More)
Oligodendrocyte precursor cells (OPCs) are one of the potential treating tools for multiple sclerosis (MS). Therefore, the cell number and differentiation of OPCs in a demyelinated spinal cord are crucial for improvement of reparative process. In the present study, we investigated whether "Governor Vessel (GV)" electro-acupuncture (EA) could efficiently(More)
Multiple sclerosis (MS) is a debilitating neurodegenerative disease characterized by axonal/neuronal damage that may be caused by defective remyelination. Current therapies aim to slow the rate of degeneration, however there are no treatment options that can stop or reverse the myelin sheath damage. Bone marrow mesenchymal stem cells (MSCs) are a potential(More)
Spinal cord transection results in severe neurological sequelae, and to date, there is no effective treatment. Because of the limited capacity for axonal regeneration in the spinal cord, recovery is minimal. Recently, efforts have been made to establish, by grafting neural tissue, a functional relay-station between the severed stumps of the injured cord.(More)
Implantation of marrow-derived mesenchymal stem cells (MSCs) is the most promising therapeutic strategy for the treatment of spinal cord injury (SCI), especially because of their potential for clinical application, such as the avoidance of immunologic rejection, their strong secretory properties, and their plasticity for developing into neural cells.(More)
To explore therapeutic potential of engineered neural tissue, we combined genetically modified neural stem cells (NSCs) and poly(lactic acid-co-glycolic acid) (PLGA) polymers to generate an artificial neural network in vitro. NSCs transfected with either NT-3 or its receptor TrkC gene were seeded into PLGA scaffold. The NSCs were widely distributed and(More)
Remyelination remains a challenging issue in spinal cord injury (SCI). In the present study, we cocultured Schwann cells (SCs) and neural stem cells (NSCs) with overexpression of neurotrophin-3 (NT-3) and its high affinity receptor tyrosine kinase receptor type 3 (TrkC), respectively, in a gelatin sponge (GS) scaffold. This was aimed to generate a(More)