Learn More
We uncovered a role for ERK signaling in GABA release, long-term potentiation (LTP), and learning, and show that disruption of this mechanism accounts for the learning deficits in a mouse model for learning disabilities in neurofibromatosis type I (NF1). Our results demonstrate that neurofibromin modulates ERK/synapsin I-dependent GABA release, which in(More)
Recent studies have identified genes and core pathways that are altered in human glioblastoma. However, the mechanisms by which alterations of these glioblastoma genes singly and cooperatively transform brain cells remain poorly understood. Further, the cell of origin of glioblastoma is largely elusive. By targeting a p53 in-frame deletion mutation to the(More)
Malignant astrocytoma, the most prevalent primary brain tumor, is resistant to all known therapies and frequently harbors mutations that inactivate p53 and activate Ras signaling. We have generated mouse strains that lack p53 and harbor a conditional allele of the NF1 tumor suppressor that negatively regulates Ras signaling. The mice develop malignant(More)
TGFbeta-related growth factors have been implicated in a variety of developmental and physiological processes in organisms ranging from nematodes to mammals. TGFbeta transduces its signal to the interior of the cell via Smad2, Smad3, and Smad4. We report the cloning and targeted disruption of the mouse Smad3 gene. Smad3 mutant mice are viable and fertile.(More)
Neurofibromatosis type 1 (NF1) is one of the most prevalent dominantly inherited genetic diseases of the nervous system. NF1 encodes a tumor suppressor whose functional loss results in the development of benign neurofibromas that can progress to malignancy. Neurofibromas are complex tumors composed of axonal processes, Schwann cells, fibroblasts,(More)
Germline mutations in the RAS/ERK signaling pathway underlie several related developmental disorders collectively termed neuro-cardio-facial-cutaneous (NCFC) syndromes. NCFC patients manifest varying degrees of cognitive impairment, but the developmental basis of their brain abnormalities remains largely unknown. Neurofibromatosis type 1 (NF1), an NCFC(More)
Interactions between tumorigenic cells and their surrounding microenvironment are critical for tumor progression yet remain incompletely understood. Germline mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1 (NF1), a common genetic disorder characterized by complex tumors called neurofibromas. Genetic studies indicate that biallelic(More)
Cerebral cavernous malformations (CCM) are frequent vascular abnormalities caused by mutations in one of the CCM genes. CCM1 (also known as KRIT1) stabilizes endothelial junctions and is essential for vascular morphogenesis in mouse embryos. However, cellular functions of CCM1 during the early steps of the CCM pathogenesis remain unknown. We show here that(More)
The discovery of a second estrogen receptor (ER), called ERbeta, in 1996 sparked intense interest within the scientific community to discover its role in mediating estrogen action. However, despite more than 6 yr of research into the function of this receptor, its physiological role in mediating estrogen action remains unclear and controversial. We have(More)
There are no effective therapies for many tumours of the nervous system. This is, in part, a consequence of their location within relatively inaccessible tissues. It is also likely, however, that the unique characteristics of the cells that give rise to these tumours create a set of conditions that facilitate tumour development. Here, we consider recent(More)