Learn More
Rapid development of transgenic and gene-targeted mice and acute genetic manipulation via gene transfer vector systems have provided powerful tools for cardiovascular research. To facilitate the phenotyping of genetically engineered murine models at the cellular and subcellular levels and to implement acute gene transfer techniques in single mouse(More)
-Transgenic mouse models have been developed to manipulate beta-adrenergic receptor (betaAR) signal transduction. Although several of these models have altered betaAR subtypes, the specific functional sequelae of betaAR stimulation in murine heart, particularly those of beta2-adrenergic receptor (beta2AR) stimulation, have not been characterized. In the(More)
Although ligand-free, constitutive beta(2)-adrenergic receptor (AR) signaling has been demonstrated in naive cell lines and in transgenic mice overexpressing cardiac beta(2)-AR, it is unclear whether the dominant cardiac beta-AR subtype, beta(1)-AR, shares the ability of spontaneous activation. In the present study, we expressed human beta(1)- or beta(2)-AR(More)
Ca2+ sparks, the elementary units of sarcoplasmic reticulum (SR) Ca2+ release in cardiac, smooth and skeletal muscle are localized (2-4 microns ) increases in intracellular Ca2+ concentration, [Ca2+]i, that last briefly (30-100 ms). These Ca2+ sparks arise from the openings of a single SR Ca2+ release channel (ryanodine receptor, RyR) or a few RyRs acting(More)
Recent studies have added complexities to the conceptual framework of cardiac beta-adrenergic receptor (beta-AR) signal transduction. Whereas the classical linear G(s)-adenylyl cyclase-cAMP-protein kinase A (PKA) signaling cascade has been corroborated for beta(1)-AR stimulation, the beta(2)-AR signaling pathway bifurcates at the very first postreceptor(More)
In contrast to beta(1)-adrenoreceptor (beta(1)-AR) signaling, beta(2)-AR stimulation in cardiomyocytes augments L-type Ca(2+) current in a cAMP-dependent protein kinase (PKA)-dependent manner but fails to phosphorylate phospholamban, indicating that the beta(2)-AR-induced cAMP/PKA signaling is highly localized. Here we show that inhibition of G(i) proteins(More)
Recent studies have shown that beta 2-adrenergic receptor (beta 2-AR)-stimulated increases in the intracellular Ca2+ (Cai) transient and contraction in cardiac myocytes are dissociated from the increase in adenosine 3',5'-cyclic monophosphate (cAMP) level and are not accompanied by an increase in phospholamban phosphorylation, an acceleration in relaxation,(More)
A receptor can be activated either by specific ligand-directed changes in conformation or by intrinsic, spontaneous conformational change. In the beta(2)-adrenergic receptor (AR) overexpression transgenic (TG4) murine heart, spontaneously activated beta(2)AR (beta(2)-R*) in the absence of ligands has been evidenced by elevated basal adenylyl cyclase(More)
Trigonobalanus doichangensis is a national rare and endangered plant of China. It is restricted to 4 sites in southwest Yunnan, China and 1 site in Chiang-Rai, northern Thailand. Investigations revealed that 4 community types are currently extant in Yunnan: isolated individuals, sprouting woods, mono-dominant forest and co-dominant forest. The habitats have(More)
BACKGROUND Recent studies of beta-adrenergic receptor (beta-AR) subtype signaling in in vitro preparations have raised doubts as to whether the cAMP/protein kinase A (PKA) signaling is activated in the same manner in response to beta2-AR versus beta1-AR stimulation. METHODS AND RESULTS The present study compared, in the intact dog, the magnitude and(More)