Learn More
Various new nonvolatile memory (NVM) technologies have emerged recently. Among all the investigated new NVM candidate technologies, spin-torque-transfer memory (STT-RAM, or MRAM), phase-change random-access memory (PCRAM), and resistive random-access memory (ReRAM) are regarded as the most promising candidates. As the ultimate goal of this NVM research is(More)
Much like multi-storey buildings in densely packed metropolises, three-dimensional (3D) chip structures are envisioned as a viable solution to skyrocketing transistor densities and burgeoning die sizes in multi-core architectures. Partitioning a larger die into smaller segments and then stacking them in a 3D fashion can significantly reduce latency and(More)
Long interconnects are becoming an increasingly important problem from both power and performance perspectives. This motivates designers to adopt on-chip network-based communication infrastructures and three-dimensional (3D) designs where multiple device layers are stacked together. Considering the current trends towards increasing use of chip(More)
Magnetic random access memory (MRAM) is a promising memory technology, which has fast read access, high density, and non-volatility. Using 3D heterogeneous integrations, it becomes feasible and cost-efficient to stack MRAM atop conventional chip multiprocessors (CMPs). However, one disadvantage of MRAM is its long write latency and its high write energy. In(More)
Caching techniques have been an efficient mechanism for mitigating the effects of the processor-memory speed gap. Traditional multi-level SRAM-based cache hierarchies, especially in the context of chip multiprocessors (CMPs), present many challenges in area requirements, core-to-cache balance, power consumption, and design complexity. New advancements in(More)
As technology scales, Negative Bias Temperature Instability (NBTI), which causes temporal performance degradation in digital circuits by affecting PMOS threshold voltage, is emerging as one of the major circuit reliability concerns. In this paper, we first investigate the impact of NBTI on PMOS devices and propose a novel temporal performance degradation(More)
As technology scales, interconnects dominate the performance and power behavior of deep submicron designs. Three-dimensional integrated circuits (3D ICs) have been proposed as a way to mitigate the interconnect challenges. In this paper, we explore the architectural design of cache memories using 3D circuits. We present a delay and energy model, 3DCacti, to(More)
Phase change memory (PCM) has been widely studied as a potential DRAM alternative. The multi-level cell (MLC) can further increase the memory density and reduce the fabrication cost by storing multiple bits in a single cell. Nevertheless, large write power, high write latency, as well as reliability issue resulted from the resistance drift, bring in(More)
Interconnects are becoming an increasing problem from both performance and power consumption perspective in future technology nodes. The introduction of 3D chip architectures, with their intrinsic capability of reducing wire length, is one of the promising solutions to mitigate the interconnect problem. While interconnect power consumption reduces due to(More)