Yuan-Hao Liu

  • Citations Per Year
Learn More
To introduce our experience of treating locally and regionally recurrent head and neck cancer patients with BNCT at Tsing Hua Open-Pool Reactor in Taiwan, 12 patients (M/F=10/2, median age 55.5 Y/O) were enrolled and 11 received two fractions of treatment. Fractionated BNCT at 30-day interval with adaptive planning according to changed T/N ratios was(More)
The GAFCHROMIC(®) EBT2 dosimetry film has been studied as a rapid QC/QA tool for 2D dose profile mapping in the BNCT beam at THOR. The pixel values of the EBT2 film image were converted to the 2D dose profile using a dose calibration curve obtained by 6-MV X-ray. The reproducibility of the 2D dose profile measured using the EBT2 film in the PMMA phantom was(More)
BNCT dosimetry has often employed heavy Monte Carlo calculations for the beam characterization and the dose determination. However, these calculations commonly ignored the scattering influence between the radiations and the room structure materials in order to facilitate the calculation speed. The aim of this article attempts to explore how the room(More)
Dose estimation of animal experiments affects many subsequent derived quantities, such as RBE and CBE values. It is important to ensure the trustiness of calculated dose of the irradiated animals. However, the dose estimation was normally calculated using simplified geometries and tissue compositions, which led to rough results. This paper introduces the(More)
A refined dose assessment method has been used now in the THOR BNCT facility, which takes into account more delicate corrections, carefully handled calibration factors, and the spectrum- and kerma-weighted k(t) value. The refined method solved the previous problem of negative derived neutron dose in phantom at deeper positions. With the improved dose(More)
The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation.(More)
High energy proton beam (>8MeV) is favorable for producing neutrons with high yield. However, the produced neutrons are of high energies. These high energy neutrons can cause severe fast neutron contamination and degrade the BNCT treatment quality if they are not appropriately moderated. Hence, this study aims to briefly discuss the issue, from the(More)
Compared with conventional aortic cross-clamping, endovascular balloon occlusion (EBO) is a valuable strategy in unstable ruptured abdominal aorta aneurysm patients; however, it is unclear how long the balloon may remain safely inflated. Using a porcine model, we evaluated the influence of different EBO time periods on intra-abdominal pressure (IAP) and the(More)
BACKGROUND Cardiac device-related infective endocarditis is an uncommon but potentially fatal complication. Therefore, cardiac devices should be removed as soon as a device-related infection is suspected. CASE REPORT A 56-year-old male with a history of arrhythmogenic right ventricular dysplasia with implantable cardioverter-defibrillators (ICDs) 7 years(More)
The (7)Li(p,xn)(7)Be nuclear reaction, based on the low-energy protons, could produce soft neutrons for accelerator-based boron neutron capture therapy (AB-BNCT). Based on the fact that the induced neutron field is relatively divergent, the relationship between the incident angle of proton beam and the neutron beam quality was evaluated in this study. To(More)