Learn More
Plant microtubules are found to be strongly associated with the cell cortex and to experience polymerization/depolymerization processes that are responsible for the organization of microtubule cortical array. Here we propose a minimal model that incorporates the basic assembly dynamics and intermicrotubule interaction to understand the unexplored phase(More)
Understanding how nanoparticles with different shapes interact with cell membranes is important in drug and gene delivery, but this interaction remains poorly studied. Using computer simulations, we investigate the physical translocation processes of nanoparticles with different shapes (for example, spheres, ellipsoids, rods, discs and pushpin-like(More)
Nanoparticle penetration into cells is an important process in drug/gene delivery. Here, we successfully design one type of novel nanoparticles with ligands decorating its surface by dynamic bonds and find that the nanoparticle can spontaneously penetrate through membranes by using dissipative particle dynamics simulations. Moreover, the physical parameters(More)
The molecular-level interactions of an antimicrobial peptide melittin with supported membrane were studied by the combination of dissipative quartz crystal microbalance (QCM-D) experiments and computer simulations. We found the response behavior of lipids upon peptide adsorption greatly influence their interactions. The perturbance and reorientation of the(More)
It is a great challenge for nanomedicine to develop novel dendrimers with maximum therapeutic potential and minimum side-effects for drug and gene delivery. As delivery vectors, dendrimers must overcome lots of barriers before delivering the bio-agents to the target in the cell. Extensive experimental investigations have been carried out to elucidate the(More)
The major challenge in cancer therapy is to efficiently translocate drug molecules into cancer tumors without doing any damage to healthy tissues. Since there exist pH gradients between tumor and normal tissues, pH-sensitive materials may have great potential to overcome such challenge. Here, we report one new type of pH-responsive drug delivery system(More)
A fundamental understanding of the receptor-mediated endocytosis is of great importance in biomedicine. In this paper, we systematically investigate the effect of the properties of coating ligands on the cellular uptake of nanoparticles by using dissipative particle dynamics, and find that the strength of the receptor-ligand interaction, the ligand density(More)
Because of the stochastic nature of biochemical processes, the copy number of any given type of molecule inside a living cell often exhibits large temporal fluctuations. Here, we develop analytic methods to investigate how the noise arising from a bursting input is reshaped by a transport reaction which is either linear or of the Michaelis-Menten type. A(More)
Motivated by the fact that a population of competing agents never set up a true stationary distribution, we propose a theory of evolution kinetics for complex adaptive systems. The formula derived for the survival probability is used to describe different phases in the population evolution when the prize-to-fine ratio as well as time changes. A kinetic(More)
Understanding how nanoparticles interact with cell membranes is of great importance in drug/gene delivery. In this paper, we investigate the interactions between Janus particles and membranes by using dissipative particle dynamics, and find that there exist two different modes (i.e., insertion and engulfment) in the Janus particle-membrane interactions. The(More)