Yu-kai Zhang

Learn More
BACKGROUND Our past researches suggested that L. barbarum exhibits direct neuroprotective and immune regulatory effects on the central nervous system, which are highly related to the events involved in the spinal cord injury, but not yet been investigated. Immune responses play an important role in the development of the pathology after secondary injury,(More)
Hemorrhage is a direct consequence of traumatic injury to the central nervous system and may cause innate immune reactions including cerebral Toll-like receptor (TLR) 4 upregulation which usually leads to poor outcome in the traumatic brain injury. In spinal cord injury (SCI), however, how hemorrhage induces innate immune reaction in spinal parenchyma(More)
To determine the role of toll-like receptors (TLRs) myeloid differentiation factor 88 (MyD88) dependent pathway in the spinal cord secondary injury, compression injury was made at T8 segment of the spinal cord in adult male Sprague-Dawley rats. Shown by RT-PCR, TLR4 mRNA in the spinal cord was quickly elevated after compression injury. Intramedullary(More)
Hypertonic solutions are mainstay of osmotherapy to cerebral edema. How hypertonic solutions affect healthy brain homeostasis, however, is not fully understood. Using rat model of cerebral edema induced by local cryoinjury, we found with immunohistochemistry that less microglial activation in healthy hemishere 24 h after hypertonic saline (HS, 3% NaCl)(More)
Shu-Xue-Tong (SXT) is a traditional Chinese drug widely used to ameliorate stagnation of blood flow, such as brain or myocardial infarction. Whether SXT may have therapeutic value for spinal cord injury (SCI), during which ischemia plays an important role in its pathology, remains to be elucidated. We hypothesized that SXT may promote SCI healing by(More)
Inosine is a purine nucleoside and is considered protective to neural cells including neurons and astrocytes against hypoxic injury. However, whether oligodendrocytes (OLs) could also be protected from hypoxia by inosine is not known. Here we investigated the effects of inosine on primarily cultured rat OLs injured by rotenone-mediated chemical hypoxia, and(More)
OBJECTIVE To investigate the intra-retinal expression of neuroglobin (Ngb) and death of retinal ganglion cells (RGCs) in acute retina ischemia rats. METHODS It was an experimental study. The acute retina ischemia model was established by specific hypothesised left retina artery of Sprague-Dawley rats. Forty rats were divided into four groups (0, 15, 30,(More)
  • 1