Learn More
We have sequenced and assembled a draft genome of G. raimondii, whose progenitor is the putative contributor of the D subgenome to the economically important fiber-producing cotton species Gossypium hirsutum and Gossypium barbadense. Over 73% of the assembled sequences were anchored on 13 G. raimondii chromosomes. The genome contains 40,976 protein-coding(More)
Upland cotton (Gossypium hirsutum) produces the most widely used natural fibers, yet the regulatory mechanisms governing fiber cell elongation are not well understood. Through sequencing of a cotton fiber cDNA library and subsequent microarray analysis, we found that ethylene biosynthesis is one of the most significantly upregulated biochemical pathways(More)
Here, we report our effort in generating an ORFeome collection for the Arabidopsis transcription factor (TF) genes. In total, ORFeome clones representing 1,282 Arabidopsis TF genes have been obtained in the Gateway high throughput cloning pENTR vector, including 411 genes whose annotation lack cDNA support. All the ORFeome inserts have also been mobilized(More)
Cotton fibers are differentiated epidermal cells originating from the outer integuments of the ovule. To identify genes involved in cotton fiber elongation, we performed subtractive PCR using cDNA prepared from 10 days post anthesis (d.p.a.) wild-type cotton fiber as tester and cDNA from a fuzzless-lintless (fl) mutant as driver. We recovered 280(More)
We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By(More)
3-ketoacyl-CoA synthase catalyses the initial condensation reaction during fatty acid elongation using malonyl-CoA and long-chain acyl-CoA as substrates. Previously, it was reported that several genes encoding putative cotton 3-ketoacyl-CoA synthases were significantly up-regulated during early cotton fibre development. In this study, GhCER6 cDNA that(More)
The quiescent centre (QC) in the Arabidopsis root apical meristem is essential for stem cell organization. Here we show that the loss of REPRESSOR OF WUSCHEL1 (ROW1), a PHD domain-containing protein, leads to QC failure, defects in cell differentiation and ectopic expression of WUSCHEL-RELATED HOMEOBOX 5 (WOX5) in cells that normally express ROW1. The(More)
Fatty acids are essential for membrane biosynthesis in all organisms and serve as signaling molecules in many animals. Here, we found that saturated very-long-chain fatty acids (VLCFAs; C20:0 to C30:0) exogenously applied in ovule culture medium significantly promoted cotton (Gossypium hirsutum) fiber cell elongation, whereas acetochlor(More)
DNA methylation controls many aspects of plant growth and development. Here, we report a novel annual growth potential change that may correlate with changes in levels of the major DNA demethylases and methyltransferases in cotton ovules harvested at different times of the year. The abundances of DNA demethylases, at both the mRNA and protein levels,(More)
Very long chain fatty acids are important components of plant lipids, suberins, and cuticular waxes. Trans-2-enoyl-CoA reductase (ECR) catalyses the fourth reaction of fatty acid elongation, which is NADPH dependent. In the present study, the expression of two cotton ECR (GhECR) genes revealed by quantitative RT-PCR analysis was up-regulated during cotton(More)