Learn More
Metagenomics is the study of microbial communities sampled directly from their natural environment, without prior culturing. Among the computational tools recently developed for metagenomic sequence analysis, binning tools attempt to classify the sequences in a metagenomic dataset into different bins (i.e., species), based on various DNA composition(More)
The mtDNA of Cycas taitungensis is a circular molecule of 414,903 bp, making it 2- to 6-fold larger than the known mtDNAs of charophytes and bryophytes, but similar to the average of 7 elucidated angiosperm mtDNAs. It is characterized by abundant RNA editing sites (1,084), more than twice the number found in the angiosperm mtDNAs. The A + T content of Cycas(More)
BACKGROUND Recovering individual genomes from metagenomic datasets allows access to uncultivated microbial populations that may have important roles in natural and engineered ecosystems. Understanding the roles of these uncultivated populations has broad application in ecology, evolution, biotechnology and medicine. Accurate binning of assembled metagenomic(More)
Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use(More)
UNLABELLED The recovery of genomes from metagenomic datasets is a critical step to defining the functional roles of the underlying uncultivated populations. We previously developed MaxBin, an automated binning approach for high-throughput recovery of microbial genomes from metagenomes. Here we present an expanded binning algorithm, MaxBin 2.0, which(More)
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, together with cas (CRISPR-associated) genes, form the CRISPR/Cas adaptive immune system, a primary defense strategy that eubacteria and archaea mobilize against foreign nucleic acids, including phages and conjugative plasmids. Short spacer sequences separated by the repeats are derived(More)
Transglutaminases (TGs) are widely distributed enzymes that catalyze posttranslational modification of proteins by Ca(2+)-dependent cross-linking reactions. The family members of TGs participate in many significant processes of biological functions such as tissue regeneration, cell differentiation, apoptosis, and certain pathologies. A novel technique for(More)
Dynamic adaptations in synaptic plasticity are critical for learning new motor skills and maintaining memory throughout life, which rapidly decline with Parkinson's disease (PD). Plasticity in the motor cortex is important for acquisition and maintenance of motor skills, but how the loss of dopamine in PD leads to disrupted structural and functional(More)
Deluged by the rate and complexity of completed genomic sequences, the need to align longer sequences becomes more urgent, and many more tools have thus been developed. In the initial stage of genomic sequence analysis, a biologist is usually faced with the questions of how to choose the best tool to align sequences of interest and how to analyze and(More)
0957-4174/$ see front matter 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.eswa.2013.12.035 ⇑ Corresponding author. Address: Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC. Tel.: +886 2 2737 6321; fax: +886 2 2737 6606. E-mail(More)