Learn More
Stem cells regulate their fate by binding to, and contracting against, the extracellular matrix. Recently, it has been proposed that in addition to matrix stiffness and ligand type, the degree of coupling of fibrous protein to the surface of the underlying substrate, that is, tethering and matrix porosity, also regulates stem cell differentiation. By(More)
Human adipose-derived stem cells (ASCs) may differentiate into cardiomyocytes and this provides a source of donor cells for tissue engineering. In this study, we evaluated cardiomyogenic differentiation protocols using a DNA demethylating agent 5-azacytidine (5-aza), a modified cardiomyogenic medium (MCM), a histone deacetylase inhibitor trichostatin A(More)
We evaluated the use of a combination of adipose tissue derived adult stem cells (ADSCs) obtained from liposuction and injectable poly(lactic-co-glycolic acid) (PLGA) spheres for adipose tissue engineering. Adipogenesis was examined in nude mice injected subcutaneously with ADSCs (group I), PLGA spheres (group II), or ADSCs attached PLGA spheres (group III)(More)
Adult mesenchymal stem cells secrete a variety of angiogenic cytokines and growth factors, so we proposed that these paracrine mechanisms may be used to promote vascularization and growth for tissue engineering in vivo. We tested whether or not human adipose-derived stem cells (ASCs) promote tissue formation in rats. ASCs were evaluated in vitro for mRNA(More)
Biochemical and biomechanical extracellular matrix (ECM) cues have recently been shown to play a role in stimulating stem cell differentiation towards several lineages, though how they combine to induce adipogenesis has been less well studied. The objective of this study was to recapitulate both the ECM composition and mechanical properties of adipose(More)
The reconstruction of soft tissue defects remains a challenge in plastic and reconstructive surgery, and a real clinical need exists for an adequate solution. This study was undertaken in order to differentiate mesenchymal stem cells (MSCs) into adipocytes, and to then assess the possibility of constructing adipose tissue via the attachment of MSCs to(More)
Human mesenchymal stem cell (hMSC) proliferation, migration, and differentiation have all been linked to extracellular matrix stiffness, yet the signaling pathway(s) that are necessary for mechanotransduction remain unproven. Vinculin has been implicated as a mechanosensor in vitro, but here we demonstrate its ability to also regulate stem cell behavior,(More)
Mesenchymal stem cells (MSC) have attracted considerable attention in the fields of cell and gene therapy due to their intrinsic ability to differentiate into multiple lineages. The various therapeutic applications involving MSC require initial expansion and/or differentiation in vitro prior to clinical use. However, serial passages of MSC in culture lead(More)
Though reduced serum or myoblast co-culture alone can differentiate adipose-derived stem cells (ASCs) into mesenchymal lineages, efficiency is usually not sufficient to restore function in vivo. Often when injected into fibrotic muscle, their differentiation may be misdirected by the now stiffened tissue. Here ASCs are shown to not just simply reflect the(More)
Cardiac tissue engineering offers the prospect of a novel treatment for acquired or congenital heart defects. Previously, our studies have shown a significant mass of vascularized cardiac tissue can be generated using a vascularized tissue engineering chamber approach in nude rats. In this present study, syngeneic rats were investigated as an animal model(More)