Yu-Kyoung Kim

Learn More
The purpose of this study was to evaluate the potency of EGFR pathway inhibition achieved by combining cetuximab, an anti-EGFR monoclonal antibody, and genistein, a tyrosine kinase inhibitor, which target extracellular and intracellular domains of the receptor, respectively, in oral squamous cell carcinoma (OSCC) in vitro and in vivo. Two OSCC cell lines,(More)
The bioconversion of cellulose and hemicellulose to soluble sugars is important for global stabilization and a sustainable human society. Here, hundreds of cellulolytic bacteria were screened and isolated from soil, compost, and animal waste slurry in Jeju Island, South Korea. Among the isolates, three strains, SL9-9, C5-16, and S52-2, showing higher(More)
Although many studies highlighted cyclooxygenase2 (COX2) inhibition as a promising therapeutic strategy for cancer, more evidence is needed for clinical application. The purpose of this study was to investigate the feasibility of COX2 inhibition as a strategic treatment modality for head and neck carcinoma (HNC). We tested COX2 inhibitor, celecoxib in six(More)
BACKGROUND Poor prognosis of oral squamous cell carcinoma (OSCC) is partly attributed to the lack of significant tumor marker for accurate staging and prognostication. We have evaluated survivin, which is a member of the inhibitor of apoptosis family as a cancer marker associated with proliferation, angiogenesis, oral carcinogenesis, and OSCC patient(More)
PURPOSE Patients undergoing impacted mandibular third molar (IMTM) extraction often have severe perioperative anxiety, which may lead to increased perceptions of pain and vital sign instability throughout surgery. Intraoperational musical interventions have been used during operations to decrease patient anxiety levels. We investigated the anxiolytic(More)
Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body(More)
Chemical combinations of Ca-P produced via plasma electrolytic oxidation (PEO) and a hydrothermal treatment were fabricated to improve the initial corrosion resistance and biocompatibility of a biodegradable Mg-3Al-1Zn-1.5Ca alloy. For the formation of an amorphous calcium phosphate composite layer on the surface of a magnesium alloy, a PEO layer composed(More)
In this study, a two-step surface treatment was developed to restrain the rapid primary degradation of a biodegradable Mg alloy and to improve their biocompatibility. Micro arc oxidation (MAO) coating was performed in alkaline electrolytes such as 1.0 M NaOH with 0.1 M glycerol and 0.1 M Na3PO4. Hydrothermal treatment was performed in 0.1 M Ca-EDTA(More)
This article demonstrates the use of hybrid nanofibers to improve the biodegradation rate and biocompatibility of AM50 magnesium alloy. Biodegradable hybrid membrane fiber layers containing nano-hydroxyapatite (nHA) particles and poly(lactide)(PLA) nanofibers were coated layer-by-layer (LbL) on AM50 coupons using a facile single-step air jet spinning (AJS)(More)
  • 1