Learn More
Probiotics are live non-pathogenic commensal organisms that exert therapeutic effects in travellers' diarrhea, irritable bowel syndrome and inflammatory bowel disease. Little is known about mechanisms of action of commensal bacteria on intestinal motility and motility-induced pain. It has been proposed that probiotics affect intestinal nerve function, but(More)
Lactobacillus species ingestion can decrease autonomic responses and spinal fiber discharge to nociceptive colorectal distension (CRD), even in the absence of inflammation. The present study aimed to determine whether dorsal root ganglion (DRG) somas could be a locus where the antinociceptive probiotic may have an effect. Healthy rats were fed with(More)
Gut commensals modulate host immune, endocrine, and metabolic functions. They also affect peripheral and central neural reflexes and function. We have previously shown that daily ingestion of Lactobacillus reuteri (LR) for 9 d inhibits the pseudoaffective cardiac response and spinal single-fiber discharge evoked by visceral distension, and decreases(More)
It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered(More)
Symbionts or probiotics are known to affect the nervous system. To understand the mechanisms involved, it is important to measure sensory neuron responses and identify molecules responsible for this interaction. Here we test the effects of adding Lactobacillus rhamnosus (JB-1) and Bacteroides fragilis to the epithelium while making voltage recordings from(More)
Ingestion of a commensal bacteria, Lactobacillus rhamnosus JB-1, has potent immunoregulatory effects, and changes nerve-dependent colon migrating motor complexes (MMCs), enteric nerve function, and behavior. How these alterations occur is unknown. JB-1 microvesicles (MVs) are enriched for heat shock protein components such as chaperonin 60 heat-shock(More)
Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain(More)
Certain probiotic bacteria have been shown to reduce distension-dependent gut pain, but the mechanisms involved remain obscure. Live luminal Lactobacillus reuteri (DSM 17938) and its conditioned medium dose dependently reduced jejunal spinal nerve firing evoked by distension or capsaicin, and 80% of this response was blocked by a specific TRPV1 channel(More)
Over the past four decades Taiwan's economy has experienced significant structural change. At the outset of this period, Taiwan was just recovering from the ravages of World War II, and the economy was heavily dominated by the agricultural sector, which accounted for one-third of the net domestic product, more than half (56 percent) of total employment, and(More)