Learn More
Heavy metals are toxic to most living organisms and cause health problems by contaminating agricultural products. In plants, phytochelatin synthase (PCS, EC 2.3.2.15) uses glutathione (GSH) as its substrate to catalyze the synthesis of heavy metal-binding peptides, known as phytochelatins (PC). PCS has been described as a constitutive enzyme that may be(More)
OBJECTIVES/HYPOTHESIS The mechanisms of cholesteatoma proliferation and growth remain unclear. The objective of this study is to discover the potential mechanisms of the proliferation and growth of cholesteatoma by direct experimental assessments on cholesteatoma tissues from patients. STUDY DESIGN Retrospective study by the comparisons between(More)
Betel quid (BQ) is a widely accepted etiological factor for oral squamous cell carcinoma (OSCC) in Southeast Asia, but how BQ chewing leads to oral carcinogenesis remains to be elucidated. We have previously demonstrated that the activation of Src family kinases (SFKs) is critical for BQ-induced oral cancer cell motility. Here we investigate whether this(More)
Gallic acid is one of the major flavonoids found in plants. It acts as an antioxidant, and seems to have anti-inflammatory, anti-viral, and anti-cancer properties. In this study, we investigated the effects of gallic acid on melanogenesis, including the activation of melanogenesis signaling pathways. Gallic acid significantly inhibited both melanin(More)
BACKGROUND Loss of the interproximal dental papilla may cause functional and, especially in the maxillary anterior region, phonetic and severe esthetic problems. The purpose of this study was to investigate whether the distance from the contact point to the bone crest on standardized periapical radiographs of the maxillary anterior teeth could be correlated(More)
Betel quid (BQ)-chewing oral cancer is a prevalent disease in many countries of Southeast Asia. Yet, the precise disease mechanism remains largely unknown. Here, we show that BQ extract-induced cell motility in three oral cancer cells (Ca9-22, SAS, and SCC9) presumably involves the Src family kinases (SFKs). Besides, BQ extract can markedly induce cell(More)
The anti-tumor effects of 11-dehydrosinulariolide, an active ingredient isolated from soft coral Sinularia leptoclados, on CAL-27 cells were investigated in this study. In the MTT assay for cell proliferation, increasing concentrations of 11-dehydrosinulariolide decreased CAL-27 cell viability. When a concentration of 1.5 μg/mL of 11-dehydrosinulariolide(More)
In this study the isolated compound 11-dehydrosinulariolide from soft coral Sinularia leptoclados possessed anti-proliferative, anti-migratory and apoptosis-inducing activities against A2058 melanoma cells. Anti-tumor effects of 11-dehydrosinulariolide were determined by MTT assay, cell migration assay and flow cytometry. Growth and migration of melanoma(More)
Active compounds from natural products have been widely studied. The anti-tumor effects of 13-acetoxysarcocrassolide isolated from Formosan soft coral Sarcophyton crassocaule on bladder cancer cells were examined in this study. An MTT assay showed that 13-acetoxysarcocrassolide was cytotoxic to bladder female transitional cancer (BFTC) cells. We determined(More)
Sinulariolide, an isolated compound from the soft coral Sinularia flexibilis, possesses the anti-proliferative, anti-migratory and apoptosis-inducing activities against the TSGH bladder carcinoma cell. The anti-tumor effects of sinulariolide were determined by 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, cell migration assay and flow(More)