Yu. I. Zilberter

Learn More
ATP-sensitive single-channel potassium currents were studied in the membrane of rat ventricular myocytes. With an internal K+ concentration of [K+]i=140 mM, the outwardly directed currents saturated at ∼1.8 pA in the region of positive potentials independently of the external K+ concentration [K+]o, whereas an increase in [K+]i of up to 300 mM caused a(More)
High-frequency arrhythmias leading to fibrillation are often associated with the presence of inhomogeneities (obstacles) in cardiac tissue and reduced excitability of cardiac cells. Studies of antiarrhythmic drugs in patients surviving myocardial infarction revealed an increased rate of sudden cardiac death compared with untreated patients. These drugs(More)
BACKGROUND Prompted by the results of CAST results, attention has shifted from class I agents that primarily block sodium channels to class III agents that primarily block potassium channels for pharmacological management of certain cardiac arrhythmias. Recent studies demonstrated that sodium channel blockade, while antiarrhythmic at the cellular level, was(More)
A patch-voltage-clamp method was used to measure fast inward ionic currents in single heart muscle cells. 1. Theoretical analysis including computer simulation has shown that the method provides fast settling of membrane potential (within 10 μs) and reliable voltage clamp on the tested membrane patch when the area of the patch is 200–300 times smaller than(More)
In voltage-clamp studies of atrial myocytes exposed to disopyramide or quinidine, pulse-train stimulation revealed use-dependent block that increased with increased pulse amplitude. Use-dependent block also became negligible at hyperpolarized holding potentials (< -150 mV), consistent with either rapid unbinding at the holding potential or trapping of the(More)
In this study we compared the membrane resting potential and action potential (AP) activation thresholds of neocortical layer 2/3 and CA1 hippocampal pyramidal cells in brain slices from 6–8-day old mice. The activation threshold was −37 ± 2 mV in the neocortical pyramids (5 cells), and −50 ± 1 mV in the CA1 ones (5 cells). The observed difference in the AP(More)
  • 1