Learn More
[reaction: see text] A new fluorescent probe, salicylaldehyde rhodamine B hydrazone (1), was synthesized and displayed selective Cu(II)-amplified absorbance and fluorescence emission above 500 nm in neutral buffered media. Upon the addition of Cu(II), the spirolactam ring of 1 was opened and a 1:1 metal-ligand complex was formed. The detection of Cu(II) by(More)
Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose(More)
[structure: see text] A new fluorescent probe 3 was synthesized, and it exhibited high selectivity for Fe(III) over other commonly coexistent metal ions in both ethanol and water. Upon the addition of Fe(III), the spirocyclic ring of 3 was opened and a significant enhancement of visible color and fluorescence in the range of 500-600 nm was observed.
Increasing interest in detecting metal ions in many chemical and biomedical fields has created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of(More)
Developing portable and low-cost methods for quantitative detection of large protein biomarkers and small molecular toxins can play a significant role in controlling and preventing diseases or toxins outbreaks. Despite years of research, most current methods still require laboratory-based or customized devices that are not widely available to the general(More)
DNA detection is commonly used in molecular biology, pathogen analysis, genetic disorder diagnosis, and forensic tests. While traditional methods for DNA detection such as polymerase chain reaction (PCR) and DNA microarrays have been well developed, they require sophisticated equipment and operations, and thus it is still challenging to develop a portable(More)
A highly selective and sensitive rhodamine-based colorimetric chemosensor (1) for quantification of divalent copper in aqueous solution has been investigated in this work. It was designed using salicylaldehyde hydrazone and rhodamine 6G as copper-chelating and signal-reporting groups, respectively. In environmentally friendly media (50%(v/v) water/ethanol(More)
An abasic site called dSpacer has been introduced into duplex regions of the 8-17 DNAzyme and adenosine aptamer for label-free fluorescent detection of Pb(2+) and adenosine, respectively. The dSpacer can bind an extrinsic fluorescent compound, 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND), and quench its fluorescence. Addition of Pb(2+) enables the(More)
In this work, two methods with complementary features, catalytic and molecular beacon (CAMB) and label-free fluorescent sensors using an abasic site, have been combined into new label-free CAMB sensors that possess advantages of each method. The label-free method using a dSpacer-containing molecular beacon makes CAMB more cost-effective and less interfering(More)
Paper biosensors: an origami sensor is printed on a single piece of paper, folded into a three-dimensional fluidic device, and encapsulated by thermal lamination. Aptamer is trapped in the fluidic channel, where it binds to the target and releases an enzyme to generate a signal. The device is read out using a digital multimeter.